forked from naotokui/RhythmVAE_M4L
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathrhythmvae.js
338 lines (283 loc) · 11.2 KB
/
rhythmvae.js
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
const path = require('path');
const Max = require('max-api');
const fs = require('fs')
const glob = require('glob');
const tf = require('@tensorflow/tfjs-node');
const { Midi } = require('@tonejs/midi'); // https://github.com/Tonejs/Midi
// Constants
const MIDI_DRUM_MAP = require('./src/constants.js').MIDI_DRUM_MAP;
const MIDI_DRUM_MAP_STRICT = require('./src/constants.js').MIDI_DRUM_MAP_STRICT;
const DRUM_CLASSES = require('./src/constants.js').DRUM_CLASSES;
const NUM_DRUM_CLASSES = require('.//src/constants.js').NUM_DRUM_CLASSES;
const LOOP_DURATION = require('.//src/constants.js').LOOP_DURATION;
const MIN_ONSETS_THRESHOLD = require('./src/constants.js').MIN_ONSETS_THRESHOLD;
// VAE model and Utilities
const utils = require('./src/utils.js');
const vae = require('./src/vae.js');
// This will be printed directly to the Max console
Max.post(`Loaded the ${path.basename(__filename)} script`);
// Global varibles
var train_data_onsets = [];
var train_data_velocities = [];
var train_data_timeshifts = [];
var isGenerating = false;
function isValidMIDIFile(midiFile){
if (midiFile.header.tempos.length > 1){
utils.error("not compatible with midi files containing multiple tempo changes")
return false;
}
return true;
}
function getTempo(midiFile){
if (midiFile.header.tempos.length == 0) return 120.0 // no tempo info, then use 120.0
return midiFile.header.tempos[0].bpm; // use the first tempo info and ignore tempo changes in MIDI file
}
// Get location of a note in pianoroll
function getNoteIndexAndTimeshift(note, tempo){
const unit = (60.0 / tempo) / 4.0; // the duration of 16th note
const half_unit = unit * 0.5;
const index = Math.max(0, Math.floor((note.time + half_unit) / unit)) // centering
const timeshift = (note.time - unit * index)/half_unit; // normalized
return [index, timeshift];
}
function getNumOfDrumOnsets(onsets){
var count = 0;
for (var i = 0; i < NUM_DRUM_CLASSES; i++){
for (var j=0; j < LOOP_DURATION; j++){
if (onsets[i][j] > 0) count += 1;
}
}
return count;
}
// Convert midi into pianoroll matrix
function processPianoroll(midiFile, midi_map){
const tempo = getTempo(midiFile);
// data array
var onsets = [];
var velocities = [];
var timeshifts = [];
midiFile.tracks.forEach(track => {
//notes are an array
const notes = track.notes
notes.forEach(note => {
if ((note.midi in midi_map)){
let timing = getNoteIndexAndTimeshift(note, tempo);
let index = timing[0];
let timeshift = timing[1];
// add new array
while (Math.floor(index / LOOP_DURATION) >= onsets.length){
onsets.push(utils.create2DArray(NUM_DRUM_CLASSES, LOOP_DURATION));
velocities.push(utils.create2DArray(NUM_DRUM_CLASSES, LOOP_DURATION));
timeshifts.push(utils.create2DArray(NUM_DRUM_CLASSES, LOOP_DURATION));
}
// store velocity
let drum_id = midi_map[note.midi];
let matrix = onsets[Math.floor(index / LOOP_DURATION)];
matrix[drum_id][index % LOOP_DURATION] = 1; // 1 for onsets
matrix = velocities[Math.floor(index / LOOP_DURATION)];
matrix[drum_id][index % LOOP_DURATION] = note.velocity; // normalized 0 - 1
// store timeshift
matrix = timeshifts[Math.floor(index / LOOP_DURATION)];
matrix[drum_id][index % LOOP_DURATION] = timeshift; // normalized -1 - 1
}
})
})
/* for debug - output pianoroll */
// if (velocities.length > 0){
// var index = utils.getRandomInt(velocities.length);
// let x = velocities[index];
// for (var i=0; i< NUM_DRUM_CLASSES; i++){
// for (var j=0; j < LOOP_DURATION; j++){
// Max.outlet("matrix_output", j, i, Math.ceil(x[i][j]));
// }
// }
// }
// 2D array to tf.tensor2d
for (var i=0; i < onsets.length; i++){
if (getNumOfDrumOnsets(onsets[i]) > MIN_ONSETS_THRESHOLD){
train_data_onsets.push(tf.tensor2d(onsets[i], [NUM_DRUM_CLASSES, LOOP_DURATION]));
train_data_velocities.push(tf.tensor2d(velocities[i], [NUM_DRUM_CLASSES, LOOP_DURATION]));
train_data_timeshifts.push(tf.tensor2d(timeshifts[i], [NUM_DRUM_CLASSES, LOOP_DURATION]));
}
}
}
function processMidiFile(filename, mapping = 0){
// // Read MIDI file into a buffer
var input = fs.readFileSync(filename)
var midiFile = new Midi(input);
if (isValidMIDIFile(midiFile) == false){
utils.error("Invalid MIDI file: " + filename);
return false;
}
var tempo = getTempo(midiFile);
// console.log("tempo:", tempo);
// console.log("signature:", midiFile.header.timeSignatures);
// select mapping
if (mapping == 0) midi_map = MIDI_DRUM_MAP_STRICT;
else midi_map = MIDI_DRUM_MAP;
processPianoroll(midiFile, midi_map);
// console.log("processed:", filename);
return true;
}
// Add training data
Max.addHandler("midi", (filename, mapping) => {
var count = 0;
// is directory?
if (fs.existsSync(filename) && fs.lstatSync(filename).isDirectory()){
// iterate over *.mid or *.midi files
glob(filename + '**/*.@(mid|midi)', {}, (err, files)=>{
utils.post("# of files in dir: " + files.length);
if (err) utils.error(err);
else {
for (var idx in files){
try {
if (processMidiFile(files[idx], mapping)) count += 1;
} catch(error) {
console.error("failed to process " + files[idx] + " - " + error);
}
}
utils.post("# of midi files added: " + count);
reportNumberOfBars();
}
})
} else {
if (processMidiFile(filename, mapping)) count += 1;
Max.post("# of midi files added: " + count);
reportNumberOfBars();
}
});
// Start training!
Max.addHandler("train", ()=>{
if (vae.isTraining()){
utils.error_status("Failed to start training. There is already an ongoing training process.");
return;
}
utils.log_status("Start training...");
console.log("# of bars in training data:", train_data_onsets.length * 2);
reportNumberOfBars();
vae.loadAndTrain(train_data_onsets, train_data_velocities, train_data_timeshifts);
});
// Generate a rhythm pattern
Max.addHandler("generate", (z1, z2, threshold, noise_range = 0.0)=>{
try {
generatePattern(z1, z2, threshold, noise_range);
} catch(error) {
error_status(error);
}
});
async function generatePattern(z1, z2, threshold, noise_range){
if (vae.isReadyToGenerate()){
if (isGenerating) return;
isGenerating = true;
let [onsets, velocities, timeshifts] = vae.generatePattern(z1, z2, noise_range);
Max.outlet("matrix_clear", 1); // clear all
for (var i=0; i< NUM_DRUM_CLASSES; i++){
var sequence = []; // for velocity
var sequenceTS = []; // for timeshift
// output for matrix view
for (var j=0; j < LOOP_DURATION; j++){
// if (pattern[i * LOOP_DURATION + j] > 0.2) x = 1;
if (onsets[i][j] > threshold){
Max.outlet("matrix_output", j + 1, i + 1, 1); // index for live.grid starts from 1
// for live.step
sequence.push(Math.floor(velocities[i][j]*127. + 1)); // 0-1 -> 1-127
sequenceTS.push(Math.floor(utils.scale(timeshifts[i][j], -1., 1, 0, 127))); // -1 - 1 -> 0 - 127
} else {
sequence.push(0);
sequenceTS.push(64);
}
}
// output for live.step object
Max.outlet("seq_output", i+1, sequence.join(" "));
Max.outlet("timeshift_output", i+1, sequenceTS.join(" "));
}
Max.outlet("generated", 1);
utils.log_status("");
isGenerating = false;
} else {
utils.error_status("Model is not trained yet");
}
}
// Start encoding... reset input matrix
var input_onset;
var input_velocity;
var input_timeshift;
Max.addHandler("encode_start", (is_test) => {
Max.post("encode_start");
input_onset = utils.create2DArray(NUM_DRUM_CLASSES, LOOP_DURATION);
input_velocity = utils.create2DArray(NUM_DRUM_CLASSES, LOOP_DURATION);
input_timeshift = utils.create2DArray(NUM_DRUM_CLASSES, LOOP_DURATION);
if (is_test){
for (var i=0; i < LOOP_DURATION; i=i+4){
input_onset[0][i] = 1;
input_velocity[0][i] = 0.8;
}
}
});
Max.addHandler("encode_add", (pitch, time, duration, velocity, muted, mapping) => {
// select mapping
if (mapping == 0) midi_map = MIDI_DRUM_MAP_STRICT;
else midi_map = MIDI_DRUM_MAP;
// add note
if (!muted){
var unit = 0.25; // 1.0 = quarter note grid size = 16th note
const half_unit = unit * 0.5;
const index = Math.max(0, Math.floor((time + half_unit) / unit)) // centering
const timeshift = (time - unit * index)/half_unit; // normalized
Max.post("index", index, timeshift, pitch);
// Ignore notes after the first 2 bars
if (index < LOOP_DURATION && pitch in midi_map){
let drum_id = midi_map[pitch];
Max.post("pitch", pitch, drum_id);
input_onset[drum_id][index] = 1;
input_velocity[drum_id][index] = velocity/127.;
input_timeshift[drum_id][index] = timeshift;
}
}
});
Max.addHandler("encode_done", () => {
utils.post(input_onset);
utils.post(input_velocity);
utils.post(input_timeshift);
// Encoding!
var inputOn = tf.tensor2d(input_onset, [NUM_DRUM_CLASSES, LOOP_DURATION])
var inputVel = tf.tensor2d(input_velocity, [NUM_DRUM_CLASSES, LOOP_DURATION])
var inputTS = tf.tensor2d(input_timeshift, [NUM_DRUM_CLASSES, LOOP_DURATION])
let zs = vae.encodePattern(inputOn, inputVel, inputTS);
// output encoded z vector
utils.post(zs)
Max.outlet("zs", zs[0], zs[1]);
});
// Clear training data
Max.addHandler("clear_train", ()=>{
train_data_onsets = []; // clear
train_data_velocities = [];
train_data_timeshift = [];
reportNumberOfBars();
});
Max.addHandler("stop", ()=>{
vae.stopTraining();
});
Max.addHandler("savemodel", (path)=>{
// check if already trained or not
if (vae.isReadyToGenerate()){
filepath = "file://" + path;
vae.saveModel(filepath);
utils.log_status("Model saved.");
} else {
utils.error_status("Train a model first!");
}
});
Max.addHandler("loadmodel", (path)=>{
filepath = "file://" + path;
vae.loadModel(filepath);
utils.log_status("Model loaded!");
});
Max.addHandler("epochs", (e)=>{
vae.setEpochs(e);
utils.post("number of epochs: " + e);
});
function reportNumberOfBars(){
Max.outlet("train_bars", train_data_onsets.length * 2); // number of bars for training
}
Max.outlet("loaded");