diff --git a/apple_health_xml_convert.py b/apple_health_xml_convert.py index 8bfce2b..a229b8c 100644 --- a/apple_health_xml_convert.py +++ b/apple_health_xml_convert.py @@ -16,34 +16,53 @@ import pandas as pd import xml.etree.ElementTree as ET import datetime as dt +import re +import sys # %% Function Definitions -def pre_process(): - """Pre-processes the XML file by replacing specific bits that would - normally result in a ParseError + +def pre_process(xml_string): """ + The export.xml file is where all your data is, but Apple Health Export has + two main problems that make it difficult to parse: + 1. The DTD markup syntax is exported incorrectly by Apple Health for some data types. + 2. The invisible character \x0b (sometimes rendered as U+000b) likes to destroy trees. Think of the trees! - print("Pre-processing...", end="") - with open("export.xml") as f: - newText = f.read().replace("\x0b", "") + Knowing this, we can save the trees and pre-processes the XML data to avoid destruction and ParseErrors. + """ - # with open("apple_health_export_2/new_export.xml", "w") as f: - with open("processed_export.xml", "w") as f: - f.write(newText) + print("Pre-processing...", end="") + sys.stdout.flush() + xml_string = strip_dtd(xml_string) + xml_string = strip_invisible_character(xml_string) print("done!") - return + return xml_string + + +def strip_invisible_character(xml_string): + return xml_string.replace("\x0b", "") -def convert_xml(): + +def strip_dtd(xml_string): + start_strip = re.search('', xml_string).span()[1] + + return xml_string[:start_strip] + xml_string[end_strip:] + + +def xml_to_csv(xml_string): """Loops through the element tree, retrieving all objects, and then combining them together into a dataframe """ - print("Converting XML File...", end="") - etree = ET.parse("processed_export.xml") + print("Converting XML File to CSV...", end="") + sys.stdout.flush() + + etree = ET.ElementTree(ET.fromstring(xml_string)) attribute_list = [] @@ -78,13 +97,16 @@ def convert_xml(): # Add loop specific column ordering if metadata entries exist if 'com.loopkit.InsulinKit.MetadataKeyProgrammedTempBasalRate' in original_cols: - shifted_cols.append('com.loopkit.InsulinKit.MetadataKeyProgrammedTempBasalRate') + shifted_cols.append( + 'com.loopkit.InsulinKit.MetadataKeyProgrammedTempBasalRate') if 'com.loopkit.InsulinKit.MetadataKeyScheduledBasalRate' in original_cols: - shifted_cols.append('com.loopkit.InsulinKit.MetadataKeyScheduledBasalRate') + shifted_cols.append( + 'com.loopkit.InsulinKit.MetadataKeyScheduledBasalRate') if 'com.loudnate.CarbKit.HKMetadataKey.AbsorptionTimeMinutes' in original_cols: - shifted_cols.append('com.loudnate.CarbKit.HKMetadataKey.AbsorptionTimeMinutes') + shifted_cols.append( + 'com.loudnate.CarbKit.HKMetadataKey.AbsorptionTimeMinutes') remaining_cols = list(set(original_cols) - set(shifted_cols)) reordered_cols = shifted_cols + remaining_cols @@ -100,6 +122,8 @@ def convert_xml(): def save_to_csv(health_df): print("Saving CSV file...", end="") + sys.stdout.flush() + today = dt.datetime.now().strftime('%Y-%m-%d') health_df.to_csv("apple_health_export_" + today + ".csv", index=False) print("done!") @@ -108,8 +132,9 @@ def save_to_csv(health_df): def main(): - pre_process() - health_df = convert_xml() + xml_string = open("export.xml").read() + xml_string = pre_process(xml_string) + health_df = xml_to_csv(xml_string) save_to_csv(health_df) return