-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathsae.py
261 lines (227 loc) · 12.8 KB
/
sae.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
import random
from collections import defaultdict
import tqdm
import torch
from graphmlp import GraphMLP
from evaluation import eval_combined
from util import cos_sim, get_batch_seq_mask
class SliceAutoEncoder(GraphMLP):
def __init__(self, in_dim, h_dim1, h_dims, capacity_sizes, capacity_types, encoder, embedder, dropout=0.2):
super(GraphMLP, self).__init__()
self.encoder = encoder
self.embedder = embedder
self.hidden1 = torch.nn.Linear(in_dim, h_dim1)
self.hiddens = torch.nn.ModuleList()
last_hidden = h_dim1
for h_dim in h_dims:
self.hiddens.append(torch.nn.Linear(last_hidden, h_dim))
last_hidden = h_dim
self.last_hidden = last_hidden
self.reverse_hiddens_residual = torch.nn.ModuleList()
self.decoder_hiddens = torch.nn.ModuleList()
for h in self.hiddens[::-1] + [self.hidden1]:
o, i = h.weight.shape
rhr = torch.nn.Linear(o, i)
rhr.weight = torch.nn.Parameter(h.weight.t())
self.reverse_hiddens_residual.append(rhr)
self.decoder_hiddens.append(torch.nn.Linear(o, i))
self.capacity_sizes = capacity_sizes
self.capacity_types = capacity_types
self.activation = torch.nn.ReLU()
self.dropout = torch.nn.Dropout(dropout)
def _map_to_vocab(self, hidden):
return hidden
def encode_slice(self, x):
result = self.forward(x, labels=None, softmax=False, loss_fxn=lambda x, y: (torch.nn.functional.nll_loss(x, y), 0, torch.zeros(1), torch.zeros(1)))
return result.last_hidden_state
def decode_hidden(self, h):
x_prime_residual = h
for decoder in self.reverse_hiddens_residual:
x_prime_residual = decoder(x_prime_residual)
x_prime_direct = h
for decoder in self.decoder_hiddens:
x_prime_direct = decoder(x_prime_direct)
return (x_prime_residual + x_prime_direct) / 2
def graph_snapshot_reconstruct_and_loss(self, struct_logits, embeddings, emb_mask,
struct_tgt=None,
use_tgt_for_mask=False,
softmax_weight=1., sigmoid_weight=1., label_weight=1., emb_weight=1.):
sub_logits = torch.split(struct_logits, self.capacity_sizes, dim=-1)
softmaxes = []
sigmoids = []
# emb_softmaxes = []
emb_sigmoids = []
# embs = []
reconstructed = []
if struct_tgt is not None:
sub_tgts = torch.split(struct_tgt, self.capacity_sizes, dim=-1)
softmax_tgts = []
sigmoid_tgts = []
# emb_softmax_tgts = []
emb_sigmoid_tgts = []
# emb_tgts = []
for i, (logits, typ) in enumerate(zip(sub_logits, self.capacity_types)):
if struct_tgt is not None:
tgts = sub_tgts[i]
logits_sigmoid = torch.sigmoid(logits)
if typ == 'hi_res_label':
mask_threshold = tgts if use_tgt_for_mask and struct_tgt is not None else logits_sigmoid.detach()
softmax_mask = torch.any(mask_threshold > 0.5, dim=-1)
if struct_tgt is not None:
softmaxes.append(logits[softmax_mask])
softmax_tgt = torch.max(tgts, dim=-1).indices[softmax_mask]
softmax_tgts.append(softmax_tgt.detach())
hardmaxes = torch.nn.functional.one_hot(torch.max(logits, dim=-1).indices, num_classes=logits.size(-1)).float()
hardmaxes[~softmax_mask] = 0.
reconstructed.append(hardmaxes)
# TODO: maybe better to use expectation:
# reconstructed.append(torch.softmax(logits, dim=-1))
# also lossing sigmoids to get the right mask
if struct_tgt is not None:
sigmoids.append(logits)
sigmoid_tgts.append(tgts)
elif typ == 'lo_res_label':
if struct_tgt is not None:
sigmoids.append(logits)
sigmoid_tgts.append(tgts) # (tgts >= 0).float()
reconstructed.append(logits_sigmoid) # (torch.sigmoid(logits) > 0.5
# elif typ == 'hi_res_emb':
# emb_sims = cos_sim(logits, embeddings) * emb_mask
#
# if struct_tgt is not None:
# emb_tgt_sims = cos_sim(tgts, embeddings) * emb_mask # TODO: would be faster to just get the token indices in index_graph(_fragment) and look up embeddings here and in forward
# softmax_mask = torch.any(emb_sims if struct_tgt is None else emb_tgt_sims > 0.5, dim=-1)
# if struct_tgt is not None:
# emb_softmaxes.append(emb_sims[softmax_mask])
# emb_softmax_tgt = torch.max(emb_tgt_sims, dim=-1).indices
# emb_softmax_tgts.append(emb_softmax_tgt[softmax_mask].detach())
# hardmaxes = torch.nn.functional.one_hot(torch.max(emb_sims, dim=-1).indices, num_classes=logits.size(-1))
# matched_embs = embeddings[hardmaxes]
# matched_embs[~softmax_mask] = 0.
# reconstructed.append(matched_embs)
#
# # also lossing sigmoids to get the right mask
# if struct_tgt is not None:
# emb_sigmoids.append(emb_sims)
# emb_sigmoid_tgts.append(emb_tgt_sims)
elif typ == 'emb':
assert logits.size(1) == embeddings.size(1), (logits.size(), embeddings.size())
emb_sims = cos_sim(logits, embeddings) * emb_mask
if struct_tgt is not None:
emb_sigmoids.append(emb_sims)
emb_tgt_sims = cos_sim(tgts, embeddings) * emb_mask
emb_sigmoid_tgts.append(emb_tgt_sims.detach())
weighted_embs = torch.matmul(torch.nn.functional.normalize(emb_sims, p=1, dim=-1), embeddings)
reconstructed.append(weighted_embs)
# embs.append(logits)
# emb_tgts.append(tgts)
# reconstructed.append(logits)
if struct_tgt is not None:
softmaxes = torch.cat(softmaxes, dim=0)
sigmoids = torch.cat(sigmoids, dim=0)
# emb_softmaxes = torch.cat(emb_softmaxes, dim=0)
emb_sigmoids = torch.cat(emb_sigmoids, dim=0)
# embs = torch.cat(embs, dim=0)
softmax_tgts = torch.cat(softmax_tgts, dim=0)
sigmoid_tgts = torch.cat(sigmoid_tgts, dim=0)
# emb_softmax_tgts = torch.cat(emb_softmax_tgts, dim=0)
emb_sigmoid_tgts = torch.cat(emb_sigmoid_tgts, dim=0)
# emb_tgts = torch.cat(emb_tgts, dim=0)
reconstructed = torch.cat(reconstructed, dim=-1)
hi_res_loss = torch.zeros_like(struct_logits).mean()
lo_res_loss = torch.zeros_like(struct_logits).mean()
emb_loss = torch.zeros_like(struct_logits).mean()
loss = torch.zeros_like(struct_logits).mean()
if struct_tgt is not None:
softmax_loss = torch.nn.CrossEntropyLoss() # TODO: add token-level option for eval
logit_sigmoid_loss = torch.nn.BCEWithLogitsLoss()
sigmoid_loss = torch.nn.BCELoss()
# cosine_loss = torch.nn.CosineEmbeddingLoss()
assert torch.all(0 <= emb_sigmoids)
assert torch.all(emb_sigmoids <= 1)
hi_res_loss = softmax_loss(softmaxes, softmax_tgts) # * softmaxes[0].size(-1)
lo_res_loss = logit_sigmoid_loss(sigmoids, sigmoid_tgts) # * sigmoids[0].size(-1)
emb_loss = sigmoid_loss(emb_sigmoids, emb_sigmoid_tgts) # * emb_sigmoids[0].size(-1)
# emb_loss = cosine_loss(embs, emb_tgts, torch.ones(embs.size(0)))
loss = softmax_weight * label_weight * hi_res_loss + \
sigmoid_weight * label_weight * lo_res_loss + \
sigmoid_weight * emb_weight * emb_loss # * sigmoids[0].size(-1) # * embs[0].size(-1)
# softmax_weight * emb_weight * softmax_loss(emb_softmaxes, emb_softmax_tgts) + \
return loss, reconstructed, hi_res_loss, lo_res_loss, emb_loss
def train(model, data, dev_data=None, n_data=None, randomize=True, checkpoint_name='checkpoint.pt',
seed=42, epochs=50, lr=1e-4):
param_groups = []
for module in model.children():
params = list(module.parameters())
if len(params) > 0 and any(p.requires_grad for p in params):
param_groups.append({'params': params, 'lr': lr})
optim = torch.optim.AdamW(params=param_groups, weight_decay=.05)
model.train()
random.seed(seed)
best_dev_loss = float('inf')
with tqdm.tqdm(None, total=epochs, desc=f'Total', unit_scale=True) as total_pbar:
for i in range(epochs):
with tqdm.tqdm(None, desc=f'Total - Epoch {i + 1}', total=epochs) as pbar:
pbar.update(i + 1)
total_pbar.set_description(f'Total - Epoch {i + 1}')
loss = 0
n = 0
if randomize:
random.shuffle(data)
with tqdm.tqdm(data, total=n_data, desc=f'Epoch {i + 1}') \
as pbar_batch:
for _, x_batch, l_batch, token_batch in pbar_batch:
optim.zero_grad()
encoded_hidden = model.encode_slice(x_batch)
decoded_slice = model.decode_hidden(encoded_hidden)
assert x_batch.shape == decoded_slice.shape
bs, sl, d = x_batch.shape
token_idxs = torch.gather(l_batch, 1, token_batch)
token_embs = model.embedder(token_idxs)
emb_mask = get_batch_seq_mask(bs, sl).to(token_embs)
batch_loss, reconstructed, hi_res_loss, lo_res_loss, emb_loss = \
model.graph_snapshot_reconstruct_and_loss(decoded_slice.view(bs * sl, d),
token_embs.view(bs * sl, -1),
emb_mask.view(bs * sl, -1),
struct_tgt=x_batch.view(bs*sl, d).detach())
del x_batch
n += 1
loss += batch_loss.detach()
batch_loss.backward()
optim.step()
pbar_batch.set_postfix(batch_loss=batch_loss.item(),
hi_res_loss=hi_res_loss.item(),
lo_res_loss=lo_res_loss.item(),
emb_loss=emb_loss.item())
pbar.set_postfix(total_loss=loss.item() / n, mem='{:.1f} MiB'.format(torch.cuda.max_memory_allocated() / 1000000))
if n_data is not None:
total_pbar.update(1 / n_data)
torch.cuda.empty_cache()
dev_loss = 0
if dev_data is not None:
model.eval()
dev_n = 0
for _, x_batch, l_batch, token_batch, _ in dev_data:
encoded_hidden = model.encode_slice(x_batch)
decoded_slice = model.decode_hidden(encoded_hidden)
assert x_batch.shape == decoded_slice.shape
bs, sl, d = x_batch.shape
token_idxs = torch.gather(l_batch, 1, token_batch)
token_embs = model.embedder(token_idxs)
emb_mask = get_batch_seq_mask(bs, sl).to(token_embs)
batch_loss, reconstructed, hi_res_loss, lo_res_loss, emb_loss = \
model.graph_snapshot_reconstruct_and_loss(decoded_slice.view(bs * sl, d),
token_embs.view(bs * sl, -1),
emb_mask.view(bs * sl, -1),
struct_tgt=x_batch.view(bs*sl, d).detach())
del x_batch
dev_n += 1
dev_loss += batch_loss.detach()
dev_loss = dev_loss.item() / dev_n
if dev_loss < best_dev_loss:
if dev_data is not None:
best_dev_loss = dev_loss
print('saving checkpoint at epoch', i, 'with best loss', dev_loss, '(dev)', loss.item() / n, '(train)')
with open(checkpoint_name, 'wb') as f:
torch.save(model.state_dict(), f)
model.train()