Experiments in this paper used the R2R data. Each experiment can be recreated following the configs below:
Model | val_seen SPL | val_unseen SPL | Config |
---|---|---|---|
Seq2Seq | 0.24 | 0.18 | seq2seq.yaml |
Seq2Seq_PM | 0.21 | 0.15 | seq2seq_pm.yaml |
Seq2Seq_DA | 0.32 | 0.23 | seq2seq_da.yaml |
Seq2Seq_Aug | 0.25 | 0.17 | seq2seq_aug.yaml ⟶ seq2seq_aug_tune.yaml |
Seq2Seq_PM_DA_Aug | 0.31 | 0.22 | seq2seq_pm_aug.yaml ⟶ seq2seq_pm_da_aug_tune.yaml |
CMA | 0.25 | 0.22 | cma.yaml |
CMA_PM | 0.26 | 0.19 | cma_pm.yaml |
CMA_DA | 0.31 | 0.25 | cma_da.yaml |
CMA_Aug | 0.24 | 0.19 | cma_aug.yaml ⟶ cma_aug_tune.yaml |
CMA_PM_DA_Aug | 0.35 | 0.30 | cma_pm_aug.yaml ⟶ cma_pm_da_aug_tune.yaml |
CMA_PM_Aug | 0.25 | 0.22 | cma_pm_aug.yaml ⟶ cma_pm_aug_tune.yaml |
CMA_DA_Aug | 0.33 | 0.26 | cma_aug.yaml ⟶ cma_da_aug_tune.yaml |
Legend | |
---|---|
Seq2Seq | Sequence-to-Sequence baseline model |
CMA | Cross-Modal Attention model |
PM | Progress monitor |
DA | DAgger training (otherwise teacher forcing) |
Aug | Uses the EnvDrop episodes to augment the training set |
⟶ | Use the config on the left to train the model. Evaluate each checkpoint on val_unseen . The best checkpoint (according to val_unseen SPL) is then fine-tuned using the config on the right. Make sure to update the field IL.ckpt_to_load before fine-tuning. |
We provide pretrained models for our best Seq2Seq model Seq2Seq_DA and Cross-Modal Attention model CMA_PM_DA_Aug. These models are hosted on Google Drive and can be downloaded as such:
# CMA_PM_DA_Aug (141MB)
gdown https://drive.google.com/uc?id=1o9PgBT38BH9pw_7V1QB3XUkY8auJqGKw
# Seq2Seq_DA (135MB)
gdown https://drive.google.com/uc?id=12swcou9g5jwR31GbQU1wJ88E_8j--Qi5