-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathlstmAE.py
413 lines (343 loc) · 15.9 KB
/
lstmAE.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
#!/usr/bin/env python
"""\
This script runs the ros node for Convolutional LSTM based exploration
Gazebo simulation with ROS should be running first.
Usage: python lstmAE.py
"""
import os
import tensorflow as tf
import roslib
import sys
import rospy
import cv2
import numpy as np
import math
import threading
import time
import csv
from rospy.numpy_msg import numpy_msg
from rospy_tutorials.msg import Floats
from std_msgs.msg import String, Float32, Float32MultiArray, Int8
from sensor_msgs.msg import Image
from cv_bridge import CvBridge, CvBridgeError
from datetime import datetime
from skimage.metrics import structural_similarity as ssim
from skimage.metrics import peak_signal_noise_ratio as psnr
from tensorflow import keras
from tensorflow.keras.layers import Conv2DTranspose, ConvLSTM2D, BatchNormalization
from tensorflow.keras.layers import TimeDistributed, Conv2D, LayerNormalization, Conv3D
from tensorflow.keras.models import Sequential, load_model
from os import listdir
from os.path import isfile, join, isdir
def main(args):
rospy.init_node('lstm_AE', anonymous=True)
q = build_q()
ic = image_converter(q) #pass tf q
evaluate(q) # sets up publisher and ConvLSTM model and then calls main loop
cv2.destroyAllWindows()
q.close()
class inference_obj(object):
def __init__(self, model, model_inf): #copy weights from model
self.pub_ssim = rospy.Publisher('ssim', Float32, queue_size=1)
self.pub_ae_image = rospy.Publisher('ae_image', numpy_msg(Floats))#, queue_size=65536 )#Float32MultiArray, queue_size=2)
self.debug = rospy.Publisher('debug', String , queue_size=1 )#Float32MultiArray, queue_size=2)
self.bridge = CvBridge()
self.fifo_set = np.zeros( (1,15,256,256,1), dtype=float ) #initialize fifo buffer of 20 frames
self.model = model # to copy weights
self.model_inf = model_inf
self.i = 0 #
ssim_lst= [.380, .380, .380, .380, .380, .380, .380, .380,.380]
self.image_subscribe = rospy.Subscriber("/camera/image", Image, self.callback)# ,queue_size = 20
def callback(self, data):
old_time = current_ms()
if self.i % 90 == 0: #about every three seconds
self.model_inf.set_weights(self.model.get_weights())
try:
cv_image = self.bridge.imgmsg_to_cv2(data, "bgr8")
except CvBridgeError as e:
print(e)
cv_image = cv2.resize(cv_image, (256, 256))
cv_image = cv2.cvtColor(cv_image, cv2.COLOR_BGR2GRAY)
cv_image = np.reshape( ( np.array( cv_image, dtype=np.float32) / 256.0),
(1, 1, 256, 256, 1 ) ) # Scale 0-1 ?
self.fifo_set = np.concatenate((cv_image, self.fifo_set[:,:-1,:,:,:]), axis=1) # push new image to front
predicted_frames = self.model_inf.predict( self.fifo_set[ : ,:10, : , : , : ], batch_size = 1 )
self.debug.publish('predicted_frames_type '+str(type(predicted_frames) ))
self.old_time = current_ms()
struct_similiar = np.array([ssim( np.reshape(self.fifo_set[0,14], (256, 256) ), #use the 5th
np.reshape(predicted_frames[0,4], (256,256) ),
data_range=1 )])
self.pub_ssim.publish(struct_similiar.astype(dtype=np.float32))
# write out image for debug purpose
"""
if self.i % 300 == 0:
trueImg = self.fifo_set[0,14] * 256
trueImg = trueImg.astype(int)
cv2.imwrite("outImages/inferenceTrue"+ str(self.i) +".png", trueImg )
rImg = predicted_frames[0,4] * 256
rImg = rImg.astype(int)
cv2.imwrite("outImages/inferenceRecon"+ str(self.i) +".png", rImg )
"""
self.i += 1
def inference_thread_f(model, model_inf):
ic = inference_obj(model, model_inf)
try:
rospy.spin()
except:
print("fail")
def exec_main_loop(model, model_inf, q, pubS):
# the saveDot vars are for saving the model when we reach a specifc SSIM accuracy.
# for example saveDot3 = True would save the model when SSIM = 0.3
saveDot3 = False #
saveDot5 = False
saveDot7 = False # True
saveDot9 = False # True
saveBest = False #True
toLearn = False
best_ssim = 0
dot25 = True
window = 10
initial_train = 10 #300 #5000 #100 #2000
# start a seperate async thread to run the inference only ConvLSTM model
inference_thread = threading.Thread(target=inference_thread_f, args=(model, model_inf,))
inference_thread.start()
vid_gen = lambda: generator_from_queue(q,Config.BATCH_SIZE, initial_train)
vid_dataset = tf.data.Dataset.from_generator( # use a Tensorflow generator for feeding data from a FIFO buffer to the neural network
vid_gen,
(tf.float32, (tf.float32,tf.float32) ) )#,
X = y = q.dequeue_many( 3 * 10 )
print('dequed')
# initialize the model with some video data
model.fit(vid_dataset,
batch_size=Config.BATCH_SIZE,
epochs=Config.EPOCHS,
shuffle=False)
print('done Fit')
timestr = time.strftime("%Y%m%d-%H%M%S")
reconFile = open("csvICRA/SSIM-1dot5e-4"+ timestr+ ".csv","w")
reconFile.write("Epoch, SSIM, Average\n")
#logdir = "~/logs/scalars/" + datetime.now().strftime("%Y%m%d-%H%M%S")
#tensorboard_callback = keras.callbacks.TensorBoard(log_dir=logdir)
num_train = 1 #this is our train interations going forward
vid_gen = lambda: generator_from_queue(q,Config.BATCH_SIZE, num_train)
vid_dataset = tf.data.Dataset.from_generator(
vid_gen,
(tf.float32, (tf.float32,tf.float32) ) )#,
ssim_lst= [.380, .380, .380, .380, .380, .380, .380, .380,.380]
old_time = current_ms()
fit_frequency = 10
reset_frequency = 10000 # so the rl can learn reward from images
# Main loop
model_reload = input("Reload previous model dot3, dot5, dot7 or dot9 or best? 3, 5, 7, 8, 9, b : ")
if model_reload == '3':
print('loading previous .3 model')
model.load_weights('models/dot3Model')
elif model_reload == '5':
print('loading previous .5 model')
model.load_weights('models/dot5Model')
elif model_reload == '7':
print('loading previous .7 model')
model.load_weights('models/dot7Model')
elif model_reload == '9':
print('loading previous .9 model')
model.load_weights('models/dot7Model')
elif model_reload == '8':
print('loading previous .85 model')
model.load_weights('models/dot85Model')
elif model_reload == 'b':
print('loading previous best model')
model.load_weights('models/bestModel')
else:
print('loading no model')
#model.save_weights('naiveModel')
for i in range(sys.maxsize**10): # billions of loops ############### MAIN LOOP
if (i % fit_frequency == 0) and toLearn:
model.fit(vid_dataset,
batch_size=Config.BATCH_SIZE,
epochs=Config.EPOCHS, shuffle=False, verbose=0)
now_set = q.dequeue_many(Config.BATCH_SIZE * window)
old_time = current_ms()
now_set = np.reshape(now_set,(-1,window,256,256,1))
gen_frames = model.predict( now_set, batch_size=1 )
if False: # i % 100 == 0: #this can be used to write out ground truth and reconstructed images at some interval
tImg = now_set[0,4] * 256
tImg = tImg.astype(int)
rImg = gen_frames[0,4] * 256
rImg = rImg.astype(int)
cv2.imwrite("outImages/generated.png", rImg )
cv2.imwrite("outImages/actual.png", tImg )
tImg = np.reshape(tImg,(256,256))
rImg = np.reshape(rImg,(256,256))
reconFile.flush()
struct_similiar = np.array([ssim( np.reshape(now_set[0,9], (256, 256) ), #use the 10th frame.
np.reshape(gen_frames[0,9], (256,256) ),
data_range=1 )])
if struct_similiar[0] > 0.3 and saveDot3:
model.save_weights('models/dot3Model') # save good model
saveDot3 = False
print(datetime.now().strftime("%m-%d_%H:%M"),'save model to dot3')
#exit('exiting with', ssim_save)
if struct_similiar[0] > 0.5 and saveDot5:
model.save_weights('models/dot5Model') # save good model
saveDot5 = False
print(datetime.now().strftime("%m-%d_%H:%M"),'save model to dot5')
#exit('exiting with', ssim_save)
if struct_similiar[0] > 0.7 and saveDot7:
model.save_weights('models/dot7Model') # save good model
saveDot7 = False
print(datetime.now().strftime("%m-%d_%H:%M"),'save model to dot7')
#exit('exiting with', ssim_save)
if struct_similiar[0] > 0.9 and saveDot9:
model.save_weights('models/dot9Model') # save good model
saveDot9 = False
print(datetime.now().strftime("%m-%d_%H:%M"),'save model to dot9')
#exit('exiting with', ssim_save)
if struct_similiar[0] > best_ssim and saveBest:
best_ssim = struct_similiar[0]
model.save_weights('models/bestModel') # save good model
#saveBest = False
print(datetime.now().strftime("%m-%d_%H:%M"),'save model to best')
#exit('exiting with', ssim_save)
#sin_val = 3.5 # where to put the sine curve to deminish reward after learned
pubS.publish(struct_similiar.astype(dtype=np.float32))
ssim_lst.append(struct_similiar[0])
if i % 10 == 0:
mov_avg = sum(ssim_lst[-50:])/50
line_str = "#" * int(struct_similiar[0]*100)
fileWrite = (str(i) + ',' + str(struct_similiar[0]) + ',' + str(round(mov_avg, 2)) + '\n' )
print('i:',i, ', ssim:',round(struct_similiar[0],4), ', mov_avg:',round(mov_avg, 2) )
x = reconFile.write(fileWrite)
exit()
model.save(Config.MODEL_PATH)
return model
def evaluate(q):
pubS = rospy.Publisher('ssim_old', numpy_msg(Floats), queue_size=1)
model, model_inf = get_func_model(True)
print("got models")
exec_main_loop(model, model_inf, q, pubS)
test = get_single_test()
print(test.shape)
sz = test.shape[0] - 10 + 1
sequences = np.zeros((sz, 10, 256, 256, 1))
# apply the sliding window technique to get the sequences
for i in range(0, sz):
clip = np.zeros((10, 256, 256, 1))
for j in range(0, 10):
clip[j] = test[i + j, :, :, :]
sequences[i] = clip
print("got data")
# get the reconstruction cost of all the sequences
reconstructed_sequences = model.predict(sequences,batch_size=1)
sequences_reconstruction_cost = np.array([np.linalg.norm(np.subtract(sequences[i],
reconstructed_sequences[i]))
for i in range(0,sz)])
sa = ( ( sequences_reconstruction_cost - np.min(sequences_reconstruction_cost)) /
np.max(sequences_reconstruction_cost) )
sr = 1.0 - sa
def current_ms():
return round(time.time() * 1000)
class image_converter(object):
def __init__(self,q):
self.bridge = CvBridge()
self.q = q
self.image_sub = rospy.Subscriber("/camera/image",Image,self.callback)
def callback(self,data):
try:
cv_image = self.bridge.imgmsg_to_cv2(data, "bgr8")
except CvBridgeError as e:
print(e)
#print("type",type(cv_image[0,0,0]))
q_image = cv2.resize(cv_image, (256, 256))
q_image = cv2.cvtColor(q_image, cv2.COLOR_BGR2GRAY)
q_image = np.array(q_image, dtype=np.float32) / 256.0
self.q.enqueue( np.reshape( q_image, ( 256, 256, 1 ) ) )
def build_q():
q_size = 100 #20
shape=(256,256,1)
q = tf.queue.FIFOQueue(q_size, [tf.float32], shapes=shape)
return q
class Config:
BATCH_SIZE = 1 # 4 was original
EPOCHS = 1 # change back to 3 (Jack)
MODEL_PATH = "/home/jack/src/video-anomaly-detection-master/notebooks/lstmautoencoder/model.hdf5"
def encoder_model(window=10, height=256,width=256):
"""
Parameters
----------
reload_model : bool
Load saved model or retrain it
"""
normalizer_1 = LayerNormalization()
normalizer_2 = LayerNormalization()
normalizer_3 = LayerNormalization()
normalizer_4 = LayerNormalization()
model_input = keras.Input(shape=(window, width, height, 1))
conv_2d_layer_1 = Conv2D(128, (11, 11), strides=4, padding="same")
time_D_layer_1 = TimeDistributed(conv_2d_layer_1)(model_input)
normalize_layer_1 = normalizer_1(time_D_layer_1)
conv_2d_layer_2 = Conv2D(64, (5, 5), strides=2, padding="same")
time_D_layer_2 = TimeDistributed(conv_2d_layer_2)(normalize_layer_1)
normalize_layer_2 = normalizer_2(time_D_layer_2)
# # # # #
lstm_layer_1 = ConvLSTM2D(64, (3, 3), padding="same", return_sequences=True)(normalize_layer_2)
lstm_norm_1 = normalizer_3(lstm_layer_1)
lstm_layer_2 = ConvLSTM2D(32, (3, 3), padding="same", return_sequences=True)(lstm_norm_1)
return model_input, normalizer_4(lstm_layer_2)
def decoder_model(encoder_model):
normalizer_5 = LayerNormalization()
normalizer_6 = LayerNormalization()
normalizer_7 = LayerNormalization()
lstm_layer_3 = ConvLSTM2D(64, (3, 3), padding="same", return_sequences=True)(encoder_model)
lstm_norm_3 = normalizer_5(lstm_layer_3)
# # # # #
conv_2d_layer_D1 = Conv2DTranspose(64, (5, 5), strides=2, padding="same")
time_D_layer_D1 = TimeDistributed(conv_2d_layer_D1)(lstm_norm_3)
normalize_layer_D1 = normalizer_6(time_D_layer_D1)
conv_2d_layer_D2 = Conv2DTranspose(128, (11, 11), strides=4, padding="same")
time_D_layer_D2 = TimeDistributed(conv_2d_layer_D2)(normalize_layer_D1)
normalize_layer_D2 = normalizer_7(time_D_layer_D2)
conv_2d_layer_D3 = Conv2D(1, (11, 11), activation="sigmoid", padding="same")
model_output = TimeDistributed( conv_2d_layer_D3 )( normalize_layer_D2 )
return model_output
def generator_from_queue(q, batch_size, gLoop):
window = 10
for i in range(gLoop):
X = y = q.dequeue_many( batch_size * window )
X = np.reshape(X, (-1,10,256,256))
y = (np.reshape(y, (-1,10,256,256)), np.zeros((1, 10, 32, 32, 32), dtype=np.float32) )
yield (X, y)
def generator_from_queue_test(q, batch_size, gLoop):
window = 10
for i in range(gLoop):
X = y = q.dequeue_many( batch_size * window )
X = np.reshape(X, (-1,10,256,256))
print('new type', type(X))
g1 = tf.random.Generator.from_seed(1)
y_train = [g1.normal(shape=[1,10,256,256,1]).astype(np.float32), g1.normal(shape=[1,10,32,32, 32]).astype(np.float32)]
yield (X, y_train)
def get_func_model(reload_model=True): # this is predict next 10
"""
Parameters
----------
reload_model : bool
Load saved model or retrain it
"""
model_inputs, encode_only = encoder_model()
model_all_layers = decoder_model(encode_only)
#with tf.device('/gpu:0'):
model = keras.Model( inputs=[model_inputs],
outputs=[model_all_layers],
name="FullConvLSTM_AE") # (None, 10, 32, 32, 32)
#model.compile(loss='mse', optimizer=tf.keras.optimizers.Adam(lr=1e-4, decay=1e-5, epsilon=1e-6), metrics=["mae"])
model.compile( loss=['mse','mse'], optimizer=tf.keras.optimizers.Adam(lr=1.5e-4, decay=1e-5, epsilon=1e-6),
metrics=["mae"], loss_weights=[1.0, 0.0])
#with tf.device('/gpu:1'):
model_inf = keras.Model( inputs=[model_inputs],
outputs=[model_all_layers],#outputs=[encode_only],
name="encoder_only") # (None, 10, 32, 32, 32)
model_inf.compile( loss=['mse','mse'], optimizer=tf.keras.optimizers.Adam(lr=1.5e-4, decay=1e-5, epsilon=1e-6),
metrics=["mae"], loss_weights=[1.0, 0.0])
print('models compliled')
return model, model_inf
if __name__ == '__main__':
main(sys.argv)