forked from PaulStoffregen/SPI
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathSPI.cpp
2157 lines (1897 loc) · 64.9 KB
/
SPI.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
/*
* Copyright (c) 2010 by Cristian Maglie <[email protected]>
* SPI library for Arduino.
*
* This file is free software; you can redistribute it and/or modify
* it under the terms of either the GNU General Public License version 2
* or the GNU Lesser General Public License version 2.1, both as
* published by the Free Software Foundation.
*/
#include "SPI.h"
#include "pins_arduino.h"
//#define DEBUG_DMA_TRANSFERS
/**********************************************************/
/* 8 bit AVR-based boards */
/**********************************************************/
#if defined(__AVR__)
#include <util/atomic.h>
SPIClass SPI;
uint8_t SPIClass::interruptMode = 0;
uint8_t SPIClass::interruptMask = 0;
uint8_t SPIClass::interruptSave = 0;
#ifdef SPI_TRANSACTION_MISMATCH_LED
uint8_t SPIClass::inTransactionFlag = 0;
#endif
uint8_t SPIClass::_transferWriteFill = 0;
static SPI_ReceiveCB *SPIClass::receivefunc;
static void *SPIClass::receivedata;
void SPIClass::begin(bool slave)
{
if (!slave) {
// Set SS to high so a connected chip will be "deselected" by default
digitalWrite(SS, HIGH);
// When the SS pin is set as OUTPUT, it can be used as
// a general purpose output port (it doesn't influence
// SPI operations).
pinMode(SS, OUTPUT);
// Warning: if the SS pin ever becomes a LOW INPUT then SPI
// automatically switches to Slave, so the data direction of
// the SS pin MUST be kept as OUTPUT.
SPCR |= _BV(MSTR);
} else {
SPCR &= _BV(MSTR);
}
// Make sure no callback is enabled
onReceive(NULL, NULL);
// Enable the SPI bus. This automatically overrides the input pins
// (MISO in master mode; MOSI, SS and SCK in slave mode) to input mode.
SPCR |= _BV(SPE);
// Set direction register for output pins. We don't need to set the
// pin mode for input pins; they are automatically set by enabling the
// SPI port.
if (!slave) {
// By doing this AFTER enabling SPI, we avoid accidentally
// clocking in a single bit since the lines go directly
// from "input" to SPI control.
// http://code.google.com/p/arduino/issues/detail?id=888
pinMode(SCK, OUTPUT);
}
pinMode(slave ? MISO : MOSI, OUTPUT);
}
void SPIClass::end() {
onReceive(NULL, NULL);
SPCR &= ~_BV(SPE);
}
// SPI interrupt service worker routine
// The AVR doesn't have a FIFO, (it's just double-buffered, in the receive
// direction only), and even the simplest receiver callback function takes
// too long. For example, when using the "Master" sample program from
// Nick Gammon, caused my Arduino Duemilenova to drop bytes even if
// all the callback function does is to put the incoming data in a buffer.
//
// To compensate for this, the interrupt service routine gets the incoming
// data as quickly as possible, and stores it into a static FIFO buffer.
// Then it enables interrupts so nested interrupts are possible, and starts
// calling the callback function for all the bytes in the FIFO buffer.
//
// The IRQ may (and probably will) happen again before the ISR has
// finished processing, but recursive interrupts only store bytes in the
// FIFO buffer; they don't process the bytes by calling the callback
// function. After enabling interrupts, the only code that recursive Ineeds executing is a test
// whether the interrupt recursion count is zero. If not, the ISR quickly
// ends, to minimize the chance of stack overflow.
//
// The initial IRQ doesn't return to the main program until it has
// completely caught up with the queue of incoming bytes.
// If too many bytes arrive in quick succession,
ISR (SPI_STC_vect)
{
static volatile byte fifo[16];
static volatile byte *head = fifo;
static volatile byte *tail = fifo;
const byte *pend = &fifo[sizeof(fifo)];
static volatile byte count;
register byte c = SPDR;
// Don't do anything if the FIFO is full (we don't want to overwrite
// old unprocessed data with overflow data)
if (count < sizeof(fifo)) {
// Make space for the new byte; wrap around to the top of the buffer
// we reach the end
if (++tail == pend)
tail = fifo;
// Store the incoming data
*tail = c;
// Make a local copy of the count so there's no race condition after
// we turn interrupts back on
register byte localcount = count++;
// Allow recursive interrupts as early as possible
interrupts();
// If we just added the first byte to the buffer, we're in charge
// of doing the callbacks.
// The "if" expression will be false for recursive interrupts, and
// they will exit immediately.
if (!localcount) {
// We added the first byte to the buffer.
// Keep processing bytes in the buffer until it's empty.
// Note: we may be interrupted by ourselves here, but the
// recursive interrupts will not execute this code.
for (;;) {
// Go the next incoming byte; wrap around the buffer if
// needed
if (++head == pend)
head = fifo;
// Call the callback function on the incoming byte
SPI.receivefunc(SPI.receivedata, *head);
// If we're done, we can quit.
// Note: We have to decrease count atomically; a decrement
// is not atomic on the AVR even if it's only a byte.
// TOOD: use atomic_uchar for count and make atomic block and copy to localcount unnecessary
ATOMIC_BLOCK(ATOMIC_FORCEON) {
localcount = --count;
}
if (!localcount)
break;
}
}
}
else
{
// TODO: Call FIFO overflow callback here
}
}
// SPI Interrupt Service Routine
//ISR (SPI_STC_vect) { SPI_isr(); }
// mapping of interrupt numbers to bits within SPI_AVR_EIMSK
#if defined(__AVR_ATmega32U4__)
#define SPI_INT0_MASK (1<<INT0)
#define SPI_INT1_MASK (1<<INT1)
#define SPI_INT2_MASK (1<<INT2)
#define SPI_INT3_MASK (1<<INT3)
#define SPI_INT4_MASK (1<<INT6)
#elif defined(__AVR_AT90USB646__) || defined(__AVR_AT90USB1286__)
#define SPI_INT0_MASK (1<<INT0)
#define SPI_INT1_MASK (1<<INT1)
#define SPI_INT2_MASK (1<<INT2)
#define SPI_INT3_MASK (1<<INT3)
#define SPI_INT4_MASK (1<<INT4)
#define SPI_INT5_MASK (1<<INT5)
#define SPI_INT6_MASK (1<<INT6)
#define SPI_INT7_MASK (1<<INT7)
#elif defined(EICRA) && defined(EICRB) && defined(EIMSK)
#define SPI_INT0_MASK (1<<INT4)
#define SPI_INT1_MASK (1<<INT5)
#define SPI_INT2_MASK (1<<INT0)
#define SPI_INT3_MASK (1<<INT1)
#define SPI_INT4_MASK (1<<INT2)
#define SPI_INT5_MASK (1<<INT3)
#define SPI_INT6_MASK (1<<INT6)
#define SPI_INT7_MASK (1<<INT7)
#else
#ifdef INT0
#define SPI_INT0_MASK (1<<INT0)
#endif
#ifdef INT1
#define SPI_INT1_MASK (1<<INT1)
#endif
#ifdef INT2
#define SPI_INT2_MASK (1<<INT2)
#endif
#endif
void SPIClass::usingInterrupt(uint8_t interruptNumber)
{
uint8_t stmp, mask;
if (interruptMode > 1) return;
stmp = SREG;
noInterrupts();
switch (interruptNumber) {
#ifdef SPI_INT0_MASK
case 0: mask = SPI_INT0_MASK; break;
#endif
#ifdef SPI_INT1_MASK
case 1: mask = SPI_INT1_MASK; break;
#endif
#ifdef SPI_INT2_MASK
case 2: mask = SPI_INT2_MASK; break;
#endif
#ifdef SPI_INT3_MASK
case 3: mask = SPI_INT3_MASK; break;
#endif
#ifdef SPI_INT4_MASK
case 4: mask = SPI_INT4_MASK; break;
#endif
#ifdef SPI_INT5_MASK
case 5: mask = SPI_INT5_MASK; break;
#endif
#ifdef SPI_INT6_MASK
case 6: mask = SPI_INT6_MASK; break;
#endif
#ifdef SPI_INT7_MASK
case 7: mask = SPI_INT7_MASK; break;
#endif
default:
interruptMode = 2;
SREG = stmp;
return;
}
interruptMode = 1;
interruptMask |= mask;
SREG = stmp;
}
void SPIClass::transfer(const void * buf, void * retbuf, uint32_t count) {
if (count == 0) return;
const uint8_t *p = (const uint8_t *)buf;
uint8_t *pret = (uint8_t *)retbuf;
uint8_t in;
uint8_t out = p ? *p++ : _transferWriteFill;
SPDR = out;
while (--count > 0) {
if (p) {
out = *p++;
}
while (!(SPSR & _BV(SPIF))) ;
in = SPDR;
SPDR = out;
if (pret)*pret++ = in;
}
while (!(SPSR & _BV(SPIF))) ;
in = SPDR;
if (pret)*pret = in;
}
/**********************************************************/
/* 32 bit Teensy 3.x */
/**********************************************************/
#elif defined(__arm__) && defined(TEENSYDUINO) && defined(KINETISK)
#if defined(KINETISK) && defined( SPI_HAS_TRANSFER_ASYNC)
#ifndef TRANSFER_COUNT_FIXED
inline void DMAChanneltransferCount(DMAChannel * dmac, unsigned int len) {
// note does no validation of length...
DMABaseClass::TCD_t *tcd = dmac->TCD;
if (!(tcd->BITER & DMA_TCD_BITER_ELINK)) {
tcd->BITER = len & 0x7fff;
} else {
tcd->BITER = (tcd->BITER & 0xFE00) | (len & 0x1ff);
}
tcd->CITER = tcd->BITER;
}
#else
inline void DMAChanneltransferCount(DMAChannel * dmac, unsigned int len) {
dmac->transferCount(len);
}
#endif
#endif
#if defined(__MK20DX128__) || defined(__MK20DX256__) // Teensy 3.0 / 3.1 / 3.2
#ifdef SPI_HAS_TRANSFER_ASYNC
void _spi_dma_rxISR0(void) {SPI.dma_rxisr();}
#else
void _spi_dma_rxISR0(void) {;}
#endif
const SPIClass::SPI_Hardware_t SPIClass::spi0_hardware = { // Teensy 3.0 / 3.1 / 3.2
SIM_SCGC6, SIM_SCGC6_SPI0, 4, IRQ_SPI0,
32767, DMAMUX_SOURCE_SPI0_TX, DMAMUX_SOURCE_SPI0_RX,
_spi_dma_rxISR0,
12, 8,
PORT_PCR_MUX(2), PORT_PCR_MUX(2),
11, 7,
PORT_PCR_MUX(2), PORT_PCR_MUX(2),
13, 14,
PORT_PCR_MUX(2), PORT_PCR_MUX(2),
10, 2, 9, 6, 20, 23, 21, 22, 15,
PORT_PCR_MUX(2), PORT_PCR_MUX(2), PORT_PCR_MUX(2), PORT_PCR_MUX(2), PORT_PCR_MUX(2), PORT_PCR_MUX(2), PORT_PCR_MUX(2), PORT_PCR_MUX(2), PORT_PCR_MUX(2),
0x1, 0x1, 0x2, 0x2, 0x4, 0x4, 0x8, 0x8, 0x10
};
SPIClass SPI((uintptr_t)&KINETISK_SPI0, (uintptr_t)&SPIClass::spi0_hardware);
#elif defined(__MK64FX512__) || defined(__MK66FX1M0__) // Teensy 3.5 / 3.6
#ifdef SPI_HAS_TRANSFER_ASYNC
void _spi_dma_rxISR0(void) {SPI.dma_rxisr();}
void _spi_dma_rxISR1(void) {SPI1.dma_rxisr();}
void _spi_dma_rxISR2(void) {SPI2.dma_rxisr();}
#else
void _spi_dma_rxISR0(void) {;}
void _spi_dma_rxISR1(void) {;}
void _spi_dma_rxISR2(void) {;}
#endif
const SPIClass::SPI_Hardware_t SPIClass::spi0_hardware = { // Teensy 3.5 / 3.6
SIM_SCGC6, SIM_SCGC6_SPI0, 4, IRQ_SPI0,
32767, DMAMUX_SOURCE_SPI0_TX, DMAMUX_SOURCE_SPI0_RX,
_spi_dma_rxISR0,
12, 8, 39, 255,
PORT_PCR_MUX(2), PORT_PCR_MUX(2), PORT_PCR_MUX(2), 0,
11, 7, 28, 255,
PORT_PCR_MUX(2), PORT_PCR_MUX(2), PORT_PCR_MUX(2), 0,
13, 14, 27,
PORT_PCR_MUX(2), PORT_PCR_MUX(2), PORT_PCR_MUX(2),
10, 2, 9, 6, 20, 23, 21, 22, 15, 26, 45,
PORT_PCR_MUX(2), PORT_PCR_MUX(2), PORT_PCR_MUX(2), PORT_PCR_MUX(2), PORT_PCR_MUX(2), PORT_PCR_MUX(2), PORT_PCR_MUX(2), PORT_PCR_MUX(2), PORT_PCR_MUX(2), PORT_PCR_MUX(2), PORT_PCR_MUX(3),
0x1, 0x1, 0x2, 0x2, 0x4, 0x4, 0x8, 0x8, 0x10, 0x1, 0x20
};
const SPIClass::SPI_Hardware_t SPIClass::spi1_hardware = { // Teensy 3.5 / 3.6
SIM_SCGC6, SIM_SCGC6_SPI1, 1, IRQ_SPI1,
#if defined(__MK66FX1M0__)
32767, DMAMUX_SOURCE_SPI1_TX, DMAMUX_SOURCE_SPI1_RX,
#else
// T3.5 does not have good DMA support on 1 and 2
511, 0, DMAMUX_SOURCE_SPI1,
#endif
_spi_dma_rxISR1,
1, 5, 61, 59,
PORT_PCR_MUX(2), PORT_PCR_MUX(7), PORT_PCR_MUX(2), PORT_PCR_MUX(7),
0, 21, 61, 59,
PORT_PCR_MUX(2), PORT_PCR_MUX(7), PORT_PCR_MUX(7), PORT_PCR_MUX(2),
32, 20, 60,
PORT_PCR_MUX(2), PORT_PCR_MUX(7), PORT_PCR_MUX(2),
6, 31, 58, 62, 63, 255, 255, 255, 255, 255, 255,
PORT_PCR_MUX(7), PORT_PCR_MUX(2), PORT_PCR_MUX(2), PORT_PCR_MUX(2), PORT_PCR_MUX(2), 0, 0, 0, 0, 0, 0,
0x1, 0x1, 0x2, 0x1, 0x4, 0, 0, 0, 0, 0, 0
};
const SPIClass::SPI_Hardware_t SPIClass::spi2_hardware = { // Teensy 3.5 / 3.6
SIM_SCGC3, SIM_SCGC3_SPI2, 1, IRQ_SPI2,
#if defined(__MK66FX1M0__)
32767, DMAMUX_SOURCE_SPI2_TX, DMAMUX_SOURCE_SPI2_RX,
#else
// T3.5 does not have good DMA support on 1 and 2
511, 0, DMAMUX_SOURCE_SPI2,
#endif
_spi_dma_rxISR2,
45, 51, 255, 255,
PORT_PCR_MUX(2), PORT_PCR_MUX(2), 0, 0,
44, 52, 255, 255,
PORT_PCR_MUX(2), PORT_PCR_MUX(2), 0, 0,
46, 53, 255,
PORT_PCR_MUX(2), PORT_PCR_MUX(2), 0,
43, 54, 55, 255, 255, 255, 255, 255, 255, 255, 255,
PORT_PCR_MUX(2), PORT_PCR_MUX(2), PORT_PCR_MUX(2), 0, 0, 0, 0, 0, 0, 0, 0,
0x1, 0x2, 0x1, 0, 0, 0, 0, 0, 0, 0, 0
};
SPIClass SPI((uintptr_t)&KINETISK_SPI0, (uintptr_t)&SPIClass::spi0_hardware);
SPIClass SPI1((uintptr_t)&KINETISK_SPI1, (uintptr_t)&SPIClass::spi1_hardware);
SPIClass SPI2((uintptr_t)&KINETISK_SPI2, (uintptr_t)&SPIClass::spi2_hardware);
#endif
void SPIClass::begin(bool slave)
{
volatile uint32_t *reg;
mcr_master = slave ? 0 : SPI_MCR_MSTR;
hardware().clock_gate_register |= hardware().clock_gate_mask;
port().MCR = SPI_MCR_MDIS | SPI_MCR_HALT | SPI_MCR_PCSIS(0x1F);
onReceive(NULL, NULL);
port().CTAR0 = SPI_CTAR_FMSZ(7) | (mcr_master ? (SPI_CTAR_PBR(0) | SPI_CTAR_BR(1) | SPI_CTAR_CSSCK(1)) : 0);
port().CTAR1 = (mcr_master ? (SPI_CTAR_FMSZ(15) | SPI_CTAR_PBR(0) | SPI_CTAR_BR(1) | SPI_CTAR_CSSCK(1)) : 0); // CTAR1 cannot be used in slave mode
port().MCR |= SPI_MCR_CLR_RXF | SPI_MCR_CLR_TXF; // Clear the FIFO buffers
port().MCR = mcr_master | SPI_MCR_PCSIS(0x1F);
reg = portConfigRegister(hardware().sdo_pin[sdo_pin_index]);
*reg = hardware().sdo_mux[sdo_pin_index] | PORT_PCR_DSE;
reg = portConfigRegister(hardware().sdi_pin[sdi_pin_index]);
*reg= hardware().sdi_mux[sdi_pin_index];
reg = portConfigRegister(hardware().sck_pin[sck_pin_index]);
*reg = hardware().sck_mux[sck_pin_index] | (mcr_master ? PORT_PCR_DSE : 0);
if (!mcr_master) {
// In slave mode, we need to set up the slave pin. Only the CS0 pins
// will work, i.e. any pin with mask 0x1.
// At this time, we set up the default pin i.e. the first in the
// array.
reg = portConfigRegister(hardware().cs_pin[0]);
*reg = hardware().cs_mux[0] | PORT_PCR_PE | PORT_PCR_PS; // pull up
// Note: In master mode, the main program is responsible for setting
// up the (in that case outgoing) CS pin.
}
}
void SPIClass::end()
{
volatile uint32_t *reg;
onReceive(NULL, NULL);
reg = portConfigRegister(hardware().sdo_pin[sdo_pin_index]);
*reg = 0;
reg = portConfigRegister(hardware().sdi_pin[sdi_pin_index]);
*reg = 0;
reg = portConfigRegister(hardware().sck_pin[sck_pin_index]);
*reg = 0;
port().MCR = SPI_MCR_MDIS | SPI_MCR_HALT | SPI_MCR_PCSIS(0x1F);
}
// Interrupt handlers for each port.
// NOTE: The names of these functions cannot be changed; they are declared
// in the kinetis.h header file as weak symbols, and stored into the
// interrupt controller vector table there.
void spi0_isr() { SPI.isr(); }
#if defined(__MK64FX512__) || defined(__MK66FX1M0__) // Teensy 3.5 / 3.6
void spi1_isr() { SPI1.isr(); }
void spi2_isr() { SPI2.isr(); }
#endif
// private interrupt handler
void SPIClass::isr()
{
if (receivefunc) {
while (available()) {
receivefunc(receivedata, port().POPR);
}
}
// Clear the Receive FIFO Drain Flag
port().SR |= SPI_SR_RFDF;
}
void SPIClass::usingInterrupt(IRQ_NUMBER_t interruptName)
{
uint32_t n = (uint32_t)interruptName;
if (n >= NVIC_NUM_INTERRUPTS) return;
//Serial.print("usingInterrupt ");
//Serial.println(n);
interruptMasksUsed |= (1 << (n >> 5));
interruptMask[n >> 5] |= (1 << (n & 0x1F));
//Serial.printf("interruptMasksUsed = %d\n", interruptMasksUsed);
//Serial.printf("interruptMask[0] = %08X\n", interruptMask[0]);
//Serial.printf("interruptMask[1] = %08X\n", interruptMask[1]);
//Serial.printf("interruptMask[2] = %08X\n", interruptMask[2]);
}
void SPIClass::notUsingInterrupt(IRQ_NUMBER_t interruptName)
{
uint32_t n = (uint32_t)interruptName;
if (n >= NVIC_NUM_INTERRUPTS) return;
interruptMask[n >> 5] &= ~(1 << (n & 0x1F));
if (interruptMask[n >> 5] == 0) {
interruptMasksUsed &= ~(1 << (n >> 5));
}
}
const uint16_t SPISettings::ctar_div_table[23] = {
2, 3, 4, 5, 6, 8, 10, 12, 16, 20, 24, 32, 40,
56, 64, 96, 128, 192, 256, 384, 512, 640, 768
};
const uint32_t SPISettings::ctar_clock_table[23] = {
SPI_CTAR_PBR(0) | SPI_CTAR_BR(0) | SPI_CTAR_DBR | SPI_CTAR_CSSCK(0),
SPI_CTAR_PBR(1) | SPI_CTAR_BR(0) | SPI_CTAR_DBR | SPI_CTAR_CSSCK(0),
SPI_CTAR_PBR(0) | SPI_CTAR_BR(0) | SPI_CTAR_CSSCK(0),
SPI_CTAR_PBR(2) | SPI_CTAR_BR(0) | SPI_CTAR_DBR | SPI_CTAR_CSSCK(0),
SPI_CTAR_PBR(1) | SPI_CTAR_BR(0) | SPI_CTAR_CSSCK(0),
SPI_CTAR_PBR(0) | SPI_CTAR_BR(1) | SPI_CTAR_CSSCK(1),
SPI_CTAR_PBR(2) | SPI_CTAR_BR(0) | SPI_CTAR_CSSCK(0),
SPI_CTAR_PBR(1) | SPI_CTAR_BR(1) | SPI_CTAR_CSSCK(1),
SPI_CTAR_PBR(0) | SPI_CTAR_BR(3) | SPI_CTAR_CSSCK(2),
SPI_CTAR_PBR(2) | SPI_CTAR_BR(1) | SPI_CTAR_CSSCK(0),
SPI_CTAR_PBR(1) | SPI_CTAR_BR(3) | SPI_CTAR_CSSCK(2),
SPI_CTAR_PBR(0) | SPI_CTAR_BR(4) | SPI_CTAR_CSSCK(3),
SPI_CTAR_PBR(2) | SPI_CTAR_BR(3) | SPI_CTAR_CSSCK(2),
SPI_CTAR_PBR(3) | SPI_CTAR_BR(3) | SPI_CTAR_CSSCK(2),
SPI_CTAR_PBR(0) | SPI_CTAR_BR(5) | SPI_CTAR_CSSCK(4),
SPI_CTAR_PBR(1) | SPI_CTAR_BR(5) | SPI_CTAR_CSSCK(4),
SPI_CTAR_PBR(0) | SPI_CTAR_BR(6) | SPI_CTAR_CSSCK(5),
SPI_CTAR_PBR(1) | SPI_CTAR_BR(6) | SPI_CTAR_CSSCK(5),
SPI_CTAR_PBR(0) | SPI_CTAR_BR(7) | SPI_CTAR_CSSCK(6),
SPI_CTAR_PBR(1) | SPI_CTAR_BR(7) | SPI_CTAR_CSSCK(6),
SPI_CTAR_PBR(0) | SPI_CTAR_BR(8) | SPI_CTAR_CSSCK(7),
SPI_CTAR_PBR(2) | SPI_CTAR_BR(7) | SPI_CTAR_CSSCK(6),
SPI_CTAR_PBR(1) | SPI_CTAR_BR(8) | SPI_CTAR_CSSCK(7)
};
void SPIClass::updateCTAR(uint32_t ctar)
{
if (port().CTAR0 != ctar) {
uint32_t mcr = port().MCR;
if (mcr & SPI_MCR_MDIS) {
port().CTAR0 = ctar;
port().CTAR1 = ctar | SPI_CTAR_FMSZ(8);
} else {
port().MCR = SPI_MCR_MDIS | SPI_MCR_HALT | SPI_MCR_PCSIS(0x1F);
port().CTAR0 = ctar;
port().CTAR1 = ctar | SPI_CTAR_FMSZ(8);
port().MCR = mcr;
}
}
}
void SPIClass::setBitOrder(uint8_t bitOrder)
{
hardware().clock_gate_register |= hardware().clock_gate_mask;
uint32_t ctar = port().CTAR0;
if (bitOrder == LSBFIRST) {
ctar |= SPI_CTAR_LSBFE;
} else {
ctar &= ~SPI_CTAR_LSBFE;
}
updateCTAR(ctar);
}
void SPIClass::setDataMode(uint8_t dataMode)
{
hardware().clock_gate_register |= hardware().clock_gate_mask;
//uint32_t ctar = port().CTAR0;
// TODO: implement with native code
//SPCR = (SPCR & ~SPI_MODE_MASK) | dataMode;
}
void SPIClass::setClockDivider_noInline(uint32_t clk)
{
hardware().clock_gate_register |= hardware().clock_gate_mask;
uint32_t ctar = port().CTAR0;
ctar &= (SPI_CTAR_CPOL | SPI_CTAR_CPHA | SPI_CTAR_LSBFE);
if (ctar & SPI_CTAR_CPHA) {
clk = (clk & 0xFFFF0FFF) | ((clk & 0xF000) >> 4);
}
ctar |= clk;
updateCTAR(ctar);
}
uint8_t SPIClass::pinIsChipSelect(uint8_t pin)
{
for (unsigned int i = 0; i < sizeof(hardware().cs_pin); i++) {
if (pin == hardware().cs_pin[i]) return hardware().cs_mask[i];
}
return 0;
}
bool SPIClass::pinIsChipSelect(uint8_t pin1, uint8_t pin2)
{
uint8_t pin1_mask, pin2_mask;
if ((pin1_mask = (uint8_t)pinIsChipSelect(pin1)) == 0) return false;
if ((pin2_mask = (uint8_t)pinIsChipSelect(pin2)) == 0) return false;
//Serial.printf("pinIsChipSelect %d %d %x %x\n\r", pin1, pin2, pin1_mask, pin2_mask);
if ((pin1_mask & pin2_mask) != 0) return false;
return true;
}
bool SPIClass::pinIsSDO(uint8_t pin)
{
for (unsigned int i = 0; i < sizeof(hardware().sdo_pin); i++) {
if (pin == hardware().sdo_pin[i]) return true;
}
return false;
}
bool SPIClass::pinIsSDI(uint8_t pin)
{
for (unsigned int i = 0; i < sizeof(hardware().sdi_pin); i++) {
if (pin == hardware().sdi_pin[i]) return true;
}
return false;
}
bool SPIClass::pinIsSCK(uint8_t pin)
{
for (unsigned int i = 0; i < sizeof(hardware().sck_pin); i++) {
if (pin == hardware().sck_pin[i]) return true;
}
return false;
}
// setCS() is not intended for use from normal Arduino programs/sketches.
// TODO: add code to un-multiplex a pin if one already set.
uint8_t SPIClass::setCS(uint8_t pin)
{
for (unsigned int i = 0; i < sizeof(hardware().cs_pin); i++) {
if ((mcr_master) || (hardware().cs_mask[i] == 0x1)) { // Slave mode can only use CS0
if (pin == hardware().cs_pin[i]) {
volatile uint32_t *reg = portConfigRegister(pin);
*reg = hardware().cs_mux[i] | (mcr_master ? PORT_PCR_DSE : (PORT_PCR_PE | PORT_PCR_PS));
return hardware().cs_mask[i];
}
}
}
return 0;
}
void SPIClass::setSDO(uint8_t pin)
{
if (mcr_master && (hardware_addr == (uintptr_t)&spi0_hardware)) {
SPCR.setMOSI_soft(pin);
}
if (pin != hardware().sdo_pin[sdo_pin_index]) {
for (unsigned int i = 0; i < sizeof(hardware().sdo_pin); i++) {
if (pin == hardware().sdo_pin[i]) {
if (hardware().clock_gate_register & hardware().clock_gate_mask) {
volatile uint32_t *reg;
reg = portConfigRegister(hardware().sdo_pin[sdo_pin_index]);
*reg = 0;
reg = portConfigRegister(hardware().sdo_pin[i]);
*reg = hardware().sdo_mux[i] | PORT_PCR_DSE;
}
sdo_pin_index = i;
return;
}
}
}
}
void SPIClass::setSDI(uint8_t pin)
{
if (mcr_master && (hardware_addr == (uintptr_t)&spi0_hardware)) {
SPCR.setMISO_soft(pin);
}
if (pin != hardware().sdi_pin[sdi_pin_index]) {
for (unsigned int i = 0; i < sizeof(hardware().sdi_pin); i++) {
if (pin == hardware().sdi_pin[i]) {
if (hardware().clock_gate_register & hardware().clock_gate_mask) {
volatile uint32_t *reg;
reg = portConfigRegister(hardware().sdi_pin[sdi_pin_index]);
*reg = 0;
reg = portConfigRegister(hardware().sdi_pin[i]);
*reg = hardware().sdi_mux[i];
}
sdi_pin_index = i;
return;
}
}
}
}
void SPIClass::setSCK(uint8_t pin)
{
if (mcr_master && (hardware_addr == (uintptr_t)&spi0_hardware)) {
SPCR.setSCK_soft(pin);
}
if (pin != hardware().sck_pin[sck_pin_index]) {
for (unsigned int i = 0; i < sizeof(hardware().sck_pin); i++) {
if (pin == hardware().sck_pin[i]) {
if (hardware().clock_gate_register & hardware().clock_gate_mask) {
volatile uint32_t *reg;
reg = portConfigRegister(hardware().sck_pin[sck_pin_index]);
*reg = 0;
reg = portConfigRegister(hardware().sck_pin[i]);
*reg = hardware().sck_mux[i] | (mcr_master ? PORT_PCR_DSE : 0);
}
sck_pin_index = i;
return;
}
}
}
}
void SPIClass::transfer(const void * buf, void * retbuf, size_t count)
{
if (count == 0) return;
if (!(port().CTAR0 & SPI_CTAR_LSBFE)) {
// We are doing the standard MSB order
const uint8_t *p_write = (const uint8_t *)buf;
uint8_t *p_read = (uint8_t *)retbuf;
size_t count_read = count;
// Lets clear the reader queue
port().MCR = SPI_MCR_MSTR | SPI_MCR_CLR_RXF | SPI_MCR_PCSIS(0x1F);
uint32_t sr;
// Now lets loop while we still have data to output
if (count & 1) {
if (p_write) {
if (count > 1)
port().PUSHR = *p_write++ | SPI_PUSHR_CONT | SPI_PUSHR_CTAS(0);
else
port().PUSHR = *p_write++ | SPI_PUSHR_CTAS(0);
} else {
if (count > 1)
port().PUSHR = _transferWriteFill | SPI_PUSHR_CONT | SPI_PUSHR_CTAS(0);
else
port().PUSHR = _transferWriteFill | SPI_PUSHR_CTAS(0);
}
count--;
}
uint16_t w = (uint16_t)(_transferWriteFill << 8) | _transferWriteFill;
while (count > 0) {
// Push out the next byte;
if (p_write) {
w = (*p_write++) << 8;
w |= *p_write++;
}
uint16_t queue_full_status_mask = (hardware().queue_size-1) << 12;
if (count == 2)
port().PUSHR = w | SPI_PUSHR_CTAS(1);
else
port().PUSHR = w | SPI_PUSHR_CONT | SPI_PUSHR_CTAS(1);
count -= 2; // how many bytes to output.
// Make sure queue is not full before pushing next byte out
do {
sr = port().SR;
if (sr & 0xF0) {
uint16_t w = port().POPR; // Read any pending RX bytes in
if (count_read & 1) {
if (p_read) {
*p_read++ = w; // Read any pending RX bytes in
}
count_read--;
} else {
if (p_read) {
*p_read++ = w >> 8;
*p_read++ = (w & 0xff);
}
count_read -= 2;
}
}
} while ((sr & (15 << 12)) > queue_full_status_mask);
}
// now lets wait for all of the read bytes to be returned...
while (count_read) {
sr = port().SR;
if (sr & 0xF0) {
uint16_t w = port().POPR; // Read any pending RX bytes in
if (count_read & 1) {
if (p_read)
*p_read++ = w; // Read any pending RX bytes in
count_read--;
} else {
if (p_read) {
*p_read++ = w >> 8;
*p_read++ = (w & 0xff);
}
count_read -= 2;
}
}
}
} else {
// We are doing the less ofen LSB mode
const uint8_t *p_write = (const uint8_t *)buf;
uint8_t *p_read = (uint8_t *)retbuf;
size_t count_read = count;
// Lets clear the reader queue
port().MCR = SPI_MCR_MSTR | SPI_MCR_CLR_RXF | SPI_MCR_PCSIS(0x1F);
uint32_t sr;
// Now lets loop while we still have data to output
if (count & 1) {
if (p_write) {
if (count > 1)
port().PUSHR = *p_write++ | SPI_PUSHR_CONT | SPI_PUSHR_CTAS(0);
else
port().PUSHR = *p_write++ | SPI_PUSHR_CTAS(0);
} else {
if (count > 1)
port().PUSHR = _transferWriteFill | SPI_PUSHR_CONT | SPI_PUSHR_CTAS(0);
else
port().PUSHR = _transferWriteFill | SPI_PUSHR_CTAS(0);
}
count--;
}
uint16_t w = _transferWriteFill;
while (count > 0) {
// Push out the next byte;
if (p_write) {
w = *p_write++;
w |= ((*p_write++) << 8);
}
uint16_t queue_full_status_mask = (hardware().queue_size-1) << 12;
if (count == 2)
port().PUSHR = w | SPI_PUSHR_CTAS(1);
else
port().PUSHR = w | SPI_PUSHR_CONT | SPI_PUSHR_CTAS(1);
count -= 2; // how many bytes to output.
// Make sure queue is not full before pushing next byte out
do {
sr = port().SR;
if (sr & 0xF0) {
uint16_t w = port().POPR; // Read any pending RX bytes in
if (count_read & 1) {
if (p_read) {
*p_read++ = w; // Read any pending RX bytes in
}
count_read--;
} else {
if (p_read) {
*p_read++ = (w & 0xff);
*p_read++ = w >> 8;
}
count_read -= 2;
}
}
} while ((sr & (15 << 12)) > queue_full_status_mask);
}
// now lets wait for all of the read bytes to be returned...
while (count_read) {
sr = port().SR;
if (sr & 0xF0) {
uint16_t w = port().POPR; // Read any pending RX bytes in
if (count_read & 1) {
if (p_read)
*p_read++ = w; // Read any pending RX bytes in
count_read--;
} else {
if (p_read) {
*p_read++ = (w & 0xff);
*p_read++ = w >> 8;
}
count_read -= 2;
}
}
}
}
}
//=============================================================================
// ASYNCH Support
//=============================================================================
//=========================================================================
// Try Transfer using DMA.
//=========================================================================
#ifdef SPI_HAS_TRANSFER_ASYNC
static uint8_t bit_bucket;
#define dontInterruptAtCompletion(dmac) (dmac)->TCD->CSR &= ~DMA_TCD_CSR_INTMAJOR
//=========================================================================
// Init the DMA channels
//=========================================================================
bool SPIClass::initDMAChannels() {
// Allocate our channels.
_dmaTX = new DMAChannel();
if (_dmaTX == nullptr) {
return false;
}
_dmaRX = new DMAChannel();
if (_dmaRX == nullptr) {
delete _dmaTX; // release it
_dmaTX = nullptr;
return false;
}
// Let's setup the RX chain
_dmaRX->disable();
_dmaRX->source((volatile uint8_t&)port().POPR);
_dmaRX->disableOnCompletion();
_dmaRX->triggerAtHardwareEvent(hardware().rx_dma_channel);
_dmaRX->attachInterrupt(hardware().dma_rxisr);
_dmaRX->interruptAtCompletion();
// We may be using settings chain here so lets set it up.
// Now lets setup TX chain. Note if trigger TX is not set
// we need to have the RX do it for us.
_dmaTX->disable();
_dmaTX->destination((volatile uint8_t&)port().PUSHR);
_dmaTX->disableOnCompletion();
if (hardware().tx_dma_channel) {
_dmaTX->triggerAtHardwareEvent(hardware().tx_dma_channel);
} else {
// Serial.printf("SPI InitDMA tx triger by RX: %x\n", (uint32_t)_dmaRX);
_dmaTX->triggerAtTransfersOf(*_dmaRX);
}
_dma_state = DMAState::idle; // Should be first thing set!
return true;
}
//=========================================================================
// Main Async Transfer function
//=========================================================================
bool SPIClass::transfer(const void *buf, void *retbuf, size_t count, EventResponderRef event_responder) {
uint8_t dma_first_byte;
if (_dma_state == DMAState::notAllocated) {
if (!initDMAChannels())
return false;
}
if (_dma_state == DMAState::active)
return false; // already active
event_responder.clearEvent(); // Make sure it is not set yet
if (count < 2) {
// Use non-async version to simplify cases...
transfer(buf, retbuf, count);
event_responder.triggerEvent();
return true;
}
// Now handle the cases where the count > then how many we can output in one DMA request
if (count > hardware().max_dma_count) {
_dma_count_remaining = count - hardware().max_dma_count;
count = hardware().max_dma_count;
} else {
_dma_count_remaining = 0;
}
// Now See if caller passed in a source buffer.
_dmaTX->TCD->ATTR_DST = 0; // Make sure set for 8 bit mode
uint8_t *write_data = (uint8_t*) buf;
if (buf) {
dma_first_byte = *write_data;
_dmaTX->sourceBuffer((uint8_t*)write_data+1, count-1);
_dmaTX->TCD->SLAST = 0; // Finish with it pointing to next location
} else {
dma_first_byte = _transferWriteFill;
_dmaTX->source((uint8_t&)_transferWriteFill); // maybe have setable value
DMAChanneltransferCount(_dmaTX, count-1);
}
if (retbuf) {
// On T3.5 must handle SPI1/2 differently as only one DMA channel
_dmaRX->TCD->ATTR_SRC = 0; //Make sure set for 8 bit mode...
_dmaRX->destinationBuffer((uint8_t*)retbuf, count);
_dmaRX->TCD->DLASTSGA = 0; // At end point after our bufffer
} else {
// Write only mode
_dmaRX->TCD->ATTR_SRC = 0; //Make sure set for 8 bit mode...
_dmaRX->destination((uint8_t&)bit_bucket);
DMAChanneltransferCount(_dmaRX, count);
}
_dma_event_responder = &event_responder;
// Now try to start it?
// Setup DMA main object
yield();
port().MCR = SPI_MCR_MSTR | SPI_MCR_CLR_RXF | SPI_MCR_CLR_TXF | SPI_MCR_PCSIS(0x1F);
port().SR = 0xFF0F0000;
// Lets try to output the first byte to make sure that we are in 8 bit mode...
port().PUSHR = dma_first_byte | SPI_PUSHR_CTAS(0) | SPI_PUSHR_CONT;
if (hardware().tx_dma_channel) {
port().RSER = SPI_RSER_RFDF_RE | SPI_RSER_RFDF_DIRS | SPI_RSER_TFFF_RE | SPI_RSER_TFFF_DIRS;
_dmaRX->enable();
// Get the initial settings.
_dmaTX->enable();
} else {
//T3.5 SP1 and SPI2 - TX is not triggered by SPI but by RX...
port().RSER = SPI_RSER_RFDF_RE | SPI_RSER_RFDF_DIRS ;
_dmaTX->triggerAtTransfersOf(*_dmaRX);
_dmaTX->enable();
_dmaRX->enable();
}
_dma_state = DMAState::active;
return true;
}
//-------------------------------------------------------------------------
// DMA RX ISR
//-------------------------------------------------------------------------
void SPIClass::dma_rxisr(void) {
_dmaRX->clearInterrupt();
_dmaTX->clearComplete();
_dmaRX->clearComplete();