-
Notifications
You must be signed in to change notification settings - Fork 2.5k
/
batch_processing.py
227 lines (197 loc) · 10.3 KB
/
batch_processing.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
# -*- coding: utf-8 -*-
import os
from glob import glob
import multiprocessing
import soundfile as sf
import numpy as np
from tqdm.auto import tqdm
import yaml
from autoeq.constants import DEFAULT_MAX_GAIN, DEFAULT_TREBLE_F_LOWER, DEFAULT_TREBLE_F_UPPER, \
DEFAULT_TREBLE_GAIN_K, DEFAULT_FS, DEFAULT_BIT_DEPTH, DEFAULT_PHASE, DEFAULT_F_RES, DEFAULT_BASS_BOOST_GAIN, \
DEFAULT_BASS_BOOST_FC, DEFAULT_BASS_BOOST_Q, DEFAULT_SMOOTHING_WINDOW_SIZE, \
DEFAULT_TREBLE_SMOOTHING_WINDOW_SIZE, PEQ_CONFIGS, DEFAULT_TREBLE_BOOST_GAIN, DEFAULT_TREBLE_BOOST_Q, \
DEFAULT_TREBLE_BOOST_FC, DEFAULT_PREAMP, DEFAULT_SOUND_SIGNATURE_SMOOTHING_WINDOW_SIZE, DEFAULT_MAX_SLOPE, \
DEFAULT_TILT
from autoeq.frequency_response import FrequencyResponse
def batch_processing(input_file=None, input_dir=None, output_dir=None, new_only=False, standardize_input=False,
target=None, parametric_eq=False, fixed_band_eq=False,
ten_band_eq=False, parametric_eq_config=None, fixed_band_eq_config=None, convolution_eq=False,
fs=DEFAULT_FS, bit_depth=DEFAULT_BIT_DEPTH, phase=DEFAULT_PHASE, f_res=DEFAULT_F_RES,
bass_boost_gain=DEFAULT_BASS_BOOST_GAIN, bass_boost_fc=DEFAULT_BASS_BOOST_FC,
bass_boost_q=DEFAULT_BASS_BOOST_Q, treble_boost_gain=DEFAULT_TREBLE_BOOST_GAIN,
treble_boost_fc=DEFAULT_TREBLE_BOOST_FC, treble_boost_q=DEFAULT_TREBLE_BOOST_Q,
tilt=DEFAULT_TILT, sound_signature=None,
sound_signature_smoothing_window_size=DEFAULT_SOUND_SIGNATURE_SMOOTHING_WINDOW_SIZE,
max_gain=DEFAULT_MAX_GAIN, max_slope=DEFAULT_MAX_SLOPE,
window_size=DEFAULT_SMOOTHING_WINDOW_SIZE, treble_window_size=DEFAULT_TREBLE_SMOOTHING_WINDOW_SIZE,
treble_f_lower=DEFAULT_TREBLE_F_LOWER, treble_f_upper=DEFAULT_TREBLE_F_UPPER,
treble_gain_k=DEFAULT_TREBLE_GAIN_K, preamp=DEFAULT_PREAMP, thread_count=0):
"""Parses files in input directory and produces equalization results in output directory."""
if not target and (parametric_eq or fixed_band_eq or ten_band_eq or convolution_eq):
raise ValueError('Target must be specified when equalizing.')
if input_file:
input_file_paths = [input_file]
input_dir = os.path.split(input_file)[0]
elif input_dir:
# Dir paths to absolute
input_dir = os.path.abspath(input_dir)
input_file_paths = glob(os.path.join(input_dir, '**', '*.csv'), recursive=True)
if len(input_file_paths) == 0:
raise FileNotFoundError(f'No CSV files found in "{input_dir}"')
else:
raise ValueError('Input file or input directory path must be specified.')
if target:
# Creates FrequencyResponse for target data
target_path = os.path.abspath(target)
target = FrequencyResponse.read_csv(target_path)
target.interpolate()
target.center()
if bit_depth == 16:
bit_depth = "PCM_16"
elif bit_depth == 24:
bit_depth = "PCM_24"
elif bit_depth == 32:
bit_depth = "PCM_32"
else:
raise ValueError('Invalid bit depth. Accepted values are 16, 24 and 32.')
if sound_signature is not None:
sound_signature = FrequencyResponse.read_csv(sound_signature)
if len(sound_signature.error) > 0:
# Error data present, replace raw data with it
sound_signature.raw = sound_signature.error
sound_signature.interpolate()
sound_signature.center()
if parametric_eq_config is not None:
if type(parametric_eq_config) is str and os.path.isfile(parametric_eq_config):
# Parametric EQ config is a file path
with open(parametric_eq_config) as fh:
parametric_eq_config = yaml.safe_load(fh)
else:
if type(parametric_eq_config) is str:
parametric_eq_config = [parametric_eq_config]
parametric_eq_config = [
PEQ_CONFIGS[config] if type(config) is str else config for config in parametric_eq_config]
if fixed_band_eq_config is not None:
if os.path.isfile(fixed_band_eq_config):
# Parametric EQ config is a file path
with open(fixed_band_eq_config) as fh:
fixed_band_eq_config = yaml.safe_load(fh)
else:
if fixed_band_eq_config not in PEQ_CONFIGS:
raise ValueError(
f'Unrecognized fixed band eq config "{fixed_band_eq_config}".'
f'If this was meant to be a file, the file does not exist.')
fixed_band_eq_config = PEQ_CONFIGS[fixed_band_eq_config]
# Prepare list of arguments for all the function calls to generate results.
n_total = 0
file_paths = []
args_list = []
for input_file_path in input_file_paths:
name = os.path.split(input_file_path)[1].replace('.csv', '')
relative_path = os.path.relpath(input_file_path, input_dir)
output_file_path = os.path.join(output_dir, relative_path)
output_file_dir, output_file_name = os.path.split(output_file_path)
output_file_dir = os.path.join(output_file_dir, name)
output_file_path = os.path.join(output_file_dir, output_file_name)
if not new_only or not os.path.isdir(output_file_dir) or not len(os.listdir(output_file_dir)):
# Not looking for only new ones or the output directory doesn't exist or it's empty
file_paths.append((input_file_path, output_file_path))
n_total += 1
args = (input_file_path, output_file_path, bass_boost_fc, bass_boost_gain, bass_boost_q,
treble_boost_fc, treble_boost_gain, treble_boost_q,
bit_depth, target, convolution_eq, f_res, fixed_band_eq, fs, parametric_eq_config,
fixed_band_eq_config, max_gain, max_slope, window_size, treble_window_size,
parametric_eq, phase, sound_signature, sound_signature_smoothing_window_size,
standardize_input, ten_band_eq, tilt, treble_f_lower, treble_f_upper, treble_gain_k, preamp)
args_list.append(args)
if not thread_count:
thread_count = multiprocessing.cpu_count()
with multiprocessing.Pool(thread_count) as pool:
results = []
for result in tqdm(
pool.imap_unordered(process_file_wrapper, args_list, chunksize=1), total=len(args_list)):
results.append(result)
return results
def process_file_wrapper(params):
return process_file(*params)
def process_file(
input_file_path, output_file_path, bass_boost_fc, bass_boost_gain, bass_boost_q,
treble_boost_fc, treble_boost_gain, treble_boost_q,
bit_depth, target, convolution_eq, f_res, fixed_band_eq, fs, parametric_eq_config,
fixed_band_eq_config, max_gain, max_slope, window_size, treble_window_size,
parametric_eq, phase, sound_signature, sound_signature_smoothing_window_size,
standardize_input, ten_band_eq, tilt, treble_f_lower, treble_f_upper, treble_gain_k, preamp):
# The method assumes fs is iterable, ensure it really is
try:
fs[0]
except TypeError:
fs = [fs]
fr = FrequencyResponse.read_csv(input_file_path)
output_dir_path, _ = os.path.split(output_file_path)
os.makedirs(output_dir_path, exist_ok=True)
if standardize_input: # Overwrite input data in standard sampling and zero bias
fr.interpolate()
fr.center()
fr.write_csv(input_file_path)
if ten_band_eq:
# Ten band eq is a shortcut for setting Fc and Q values to standard 10-band equalizer filters parameters
fixed_band_eq = True
fixed_band_eq_config = PEQ_CONFIGS['10_BAND_GRAPHIC_EQ']
fr.process(
target=target,
min_mean_error=True,
bass_boost_gain=bass_boost_gain,
bass_boost_fc=bass_boost_fc,
bass_boost_q=bass_boost_q,
treble_boost_gain=treble_boost_gain,
treble_boost_fc=treble_boost_fc,
treble_boost_q=treble_boost_q,
tilt=tilt,
fs=fs[0],
sound_signature=sound_signature,
sound_signature_smoothing_window_size=sound_signature_smoothing_window_size,
max_gain=max_gain,
max_slope=max_slope,
window_size=window_size,
treble_window_size=treble_window_size,
treble_f_lower=treble_f_lower,
treble_f_upper=treble_f_upper,
treble_gain_k=treble_gain_k,)
fr.write_eqapo_graphic_eq(output_file_path.replace('.csv', ' GraphicEQ.txt'), normalize=True, preamp=preamp)
if parametric_eq:
parametric_peqs = fr.optimize_parametric_eq(
parametric_eq_config, fs[0], preamp=preamp) if parametric_eq else None
fr.write_eqapo_parametric_eq(output_file_path.replace('.csv', ' ParametricEQ.txt'), parametric_peqs)
else:
parametric_peqs = None
if fixed_band_eq:
fixed_band_peq = fr.optimize_fixed_band_eq(
fixed_band_eq_config, fs[0], preamp=preamp)[0] if fixed_band_eq else None
fr.write_eqapo_parametric_eq(output_file_path.replace('.csv', ' FixedBandEQ.txt'), [fixed_band_peq])
else:
fixed_band_peq = None
if convolution_eq:
for _fs in fs:
if phase in ['minimum', 'both']: # Write minimum phase impulse response
minimum_phase_fir = fr.minimum_phase_impulse_response(
fs=_fs, f_res=f_res, normalize=True, preamp=preamp)
minimum_phase_ir = np.tile(minimum_phase_fir, (2, 1)).T
sf.write(
output_file_path.replace('.csv', f' minimum phase {_fs}Hz.wav'), minimum_phase_ir, _fs, bit_depth)
if phase in ['linear', 'both']: # Write linear phase impulse response
linear_phase_fir = fr.linear_phase_impulse_response(
fs=_fs, f_res=f_res, normalize=True, preamp=preamp)
linear_phase_ir = np.tile(linear_phase_fir, (2, 1)).T
sf.write(
output_file_path.replace('.csv', f' linear phase {_fs}Hz.wav'), linear_phase_ir, _fs, bit_depth)
fr.write_csv(output_file_path)
fr.plot(
show_fig=False,
close_fig=True,
file_path=output_file_path.replace('.csv', '.png'),
)
fr.write_readme(
os.path.join(output_dir_path, 'README.md'),
parametric_peqs=parametric_peqs,
fixed_band_peq=fixed_band_peq)
return fr