-
Notifications
You must be signed in to change notification settings - Fork 6
/
Copy pathsal.c
325 lines (289 loc) · 8.87 KB
/
sal.c
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
// saliency detection.
// loosely based on Context-Aware Saliency Detection by goferman et al
// with kd-trees as the AK-NN algorithm
#include <stdio.h>
#include <stdlib.h>
#include <limits.h>
#include <opencv2/imgproc/imgproc_c.h>
#include <opencv2/highgui/highgui_c.h>
#include "kdtree.h"
#include "prop.h"
#include "sal.h"
#define XY_TO_INT(x, y) (((y) << 16) | (x))
#define XY_TO_X(x) ((x)&((1<<16)-1))
#define XY_TO_Y(y) ((y)>>16)
static void print_usage(char **argv)
{
printf("Usage: %s <path> [outfile]\n", argv[0]);
exit(1);
}
static IplImage *alignedImage(CvSize dim, int depth, int chan, int align)
{
int w = dim.width, h = dim.height;
int dx = align - (w % align), dy = align - (h % align);
w += (dx != align) * dx;
h += (dy != align) * dy; // really unnecessary
CvSize s = {w, h};
return cvCreateImage(s, depth, chan);
}
static IplImage *alignedImageFrom(char *file, int align)
{
IplImage *pre = cvLoadImage(file, CV_LOAD_IMAGE_COLOR);
IplImage *img = alignedImage(cvGetSize(pre), pre->depth, pre->nChannels, align);
char *pre_data = pre->imageData;
char *img_data = img->imageData;
int i;
for (i = 0; i < pre->height; i++) {
memcpy(img_data, pre_data, pre->widthStep);
img_data += img->widthStep;
pre_data += pre->widthStep;
}
cvReleaseImage(&pre);
return img;
}
static char *name(char *fname)
{
int i, len = strlen(fname);
for (i = len-1; i >= 0; i--) {
if (fname[i] == '/') return fname+i+1;
}
return fname;
}
static double l2_color(int *a, int *b, int k)
{
int i, dist = 0;
for (i = 0; i < k; i++) {
int diff = a[i] - b[i];
dist += diff*diff;
}
return sqrt(dist);///sqrt(255*255*k);
}
static double l2_pos(kd_tree *t, int *a, int *b, int w)
{
int ap = (a - t->start)/t->k;
int bp = (b - t->start)/t->k;
int ax = ap % w, ay = ap / w;
int bx = bp % w, by = bp / w;
int dx = ax - bx, dy = ay - by;
return sqrt(dx*dx + dy*dy);
}
static double clamp(double d)
{
if (d > 1) return 1.0;
if (d < 0) return 0;
return d;
}
static float compute_dist(kd_tree *t, kd_node *n, int *v, int w)
{
int i; double dist = 0;
for (i = 0; i < n->nb; i++) {
int *u = n->value[i];
double dcolor = l2_color(u, v, t->k);
double dpos = l2_pos(t, u, v, w);
dist += dcolor / (1 + t->k*dpos);
}
return dist;
}
static void swap2(double *best, kd_node **bestn)
{
float d = best[0];
best[0] = best[1];
best[1] = d;
kd_node *n = bestn[0];
bestn[0] = bestn[1];
bestn[1] = n;
}
static void compute_node(kd_tree *t, double *best, kd_node **bestn,
kd_node *n, int *imgc, int *nb, double *dist, int w)
{
double d = compute_dist(t, n, imgc, w);
*nb += n->nb;
*dist += d;
if (d < best[0]) {
bestn[0] = n;
best[0] = d;
if (best[0] < best[1]) swap2(best, bestn);
}
}
static float compute(kd_tree *t, kd_node **nodes, int *imgc,
int i, int w)
{
kd_node *n = kdt_query(t, imgc), *bestn[] = {n, n};
double dist = compute_dist(t, n, imgc, w), best[] = {dist, dist};
int nb = n->nb, x = i % w, y = i / w;
if (!x) goto try_top;
compute_node(t, best, bestn, nodes[-1], imgc, &nb, &dist, w);
compute_node(t, best, bestn, nodes[-2], imgc, &nb, &dist, w);
try_top:
if (!y) goto compute_finish;
compute_node(t, best, bestn, nodes[0], imgc, &nb, &dist, w);
compute_node(t, best, bestn, nodes[1], imgc, &nb, &dist, w);
compute_finish:
nodes[0] = bestn[1]; // max-heap; this is the better match
nodes[1] = bestn[0];
return 1 - exp(-dist/nb);
}
static IplImage *salmap(IplImage *img, int free_img)
{
int plane_coeffs[] = {2, 9, 5}, i, *imgc, *c;
int dim = plane_coeffs[0] + plane_coeffs[1] + plane_coeffs[2];
CvSize isz = cvGetSize(img);
int w = isz.width - 8 + 1, h = isz.height - 8 + 1, sz = w*h;
CvSize salsz = {w, h};
IplImage *sal = cvCreateImage(salsz, IPL_DEPTH_32F, 1);
int salstride = sal->widthStep/sizeof(float);
kd_tree kdt;
kd_node **nodes = malloc(w*2*sizeof(kd_node*));
double min, max;
memset(&kdt, 0, sizeof(kd_tree));
prop_coeffs(img, plane_coeffs, &imgc);
kdt_new_overlap(&kdt, imgc, sz, dim, 0.5, 8, w);
c = imgc;
for (i = 0; i < sz; i++) {
int x = i % w, y = i / w;
float *data = (float*)sal->imageData + (y * salstride + x);
*data = compute(&kdt, nodes+x*2, imgc, i, w);
imgc += kdt.k;
}
kdt_free(&kdt);
free(nodes);
free(c);
if (free_img) cvReleaseImage(&img);
cvMinMaxLoc(sal, &min, &max, NULL, NULL, NULL);
CvScalar scalar = cvRealScalar(-min);
cvAddS(sal, scalar, sal, NULL);
cvConvertScale(sal, sal, 1.0/(max - min), 0);
return sal;
}
static IplImage* resize(IplImage *img, float scale)
{
CvSize sz = {img->width * scale, img->height * scale};
IplImage *ret = alignedImage(sz, img->depth, img->nChannels, 8);
cvResize(img, ret, CV_INTER_CUBIC);
return ret;
}
static IplImage *resize2(IplImage *img, CvSize sz)
{
IplImage *ret = alignedImage(sz, img->depth, img->nChannels, 8);
cvResize(img, ret, CV_INTER_CUBIC);
return ret;
}
static void write2file(char *fname, IplImage *img)
{
IplImage *out = cvCreateImage(cvGetSize(img), IPL_DEPTH_8U, img->nChannels);
cvConvertScale(img, out, 255, 0);
cvSaveImage(fname, out, 0);
cvReleaseImage(&out);
}
static float attended_scale(IplImage *thresh, int x, int y)
{
int d = 32;
double r = d/2;
if (x+r >= thresh->width) return 0.5; // lazy; fix later
if (y+r >= thresh->height) return 0.5;
int s = thresh->widthStep/sizeof(float), a, b;
int startx = abs((x - r)), starty = abs((y - r));
float *f = (float*)thresh->imageData + (starty*s + startx);
double dist = 0;
int count = 0;
for (a = 0; a < d; a++) {
float *g = f + s*a;
for (b = 0; b < d; b++) {
double ed = (a - r)*(a - r) + (b - r)*(b - r);
if (ed < r*r) {
if (*g > 0) {
dist += sqrt(ed);
count++;
}
}
g++;
}
}
if (count) return (count*dist)/((r*r)*sqrt(2*r*r));
return 0.0;
}
static IplImage* calc_distmap(IplImage *thresh)
{
IplImage *distmap = cvCreateImage(cvGetSize(thresh), thresh->depth, 1);
int x, y;
float *data; int stride = thresh->widthStep/sizeof(float);
for (y = 0; y < thresh->height; y++) {
data = (float*)distmap->imageData + y * stride;
for (x = 0; x < thresh->width; x++) {
data[x] = attended_scale(thresh, x, y);
}
}
return distmap;
}
static IplImage* combine(IplImage** maps, int nb)
{
int i;
double min, max;
IplImage *img = maps[0];
CvSize sz = cvGetSize(img);
IplImage *sum = alignedImage(sz, img->depth, img->nChannels, 8);
IplImage *mean = alignedImage(sz, img->depth, img->nChannels, 8);
IplImage *thr = alignedImage(sz, img->depth, 1, 8);
cvXor(sum, sum, sum, NULL);
for (i = 0; i < nb; i++) {
IplImage *s1 = maps[i];
IplImage *r = resize2(s1, sz);
cvAcc(r, sum, NULL);
cvReleaseImage(&r);
}
cvConvertScale(sum, mean, 1.0/nb, 0);
cvXor(sum, sum, sum, NULL);
for (i = 0; i < 10; i++) {
cvThreshold(mean, thr, 0.5 + 0.1*i, 0.0, CV_THRESH_TOZERO);
IplImage *dist = calc_distmap(thr);
cvAcc(dist, sum, NULL);
cvReleaseImage(&dist);
}
cvConvertScale(sum, sum, 1.0/10, 0);
cvMinMaxLoc(sum, &min, &max, NULL, NULL, NULL);
CvScalar scalar = cvRealScalar(-min);
cvAddS(sum, scalar, sum, NULL);
cvConvertScale(sum, sum, 1.0/(max - min), 0);
cvMul(sum, mean, mean, 1);
cvReleaseImage(&sum);
cvReleaseImage(&thr);
return mean;
}
IplImage* saliency(IplImage *img)
{
IplImage *s1 = salmap(img, 0);
IplImage *s2 = salmap(resize(img, 0.8), 1);
IplImage *s3 = salmap(resize(img, 0.5), 1);
IplImage *s4 = salmap(resize(img, 0.25), 1);
IplImage *scales[] = { s1, s2, s3, s4 };
IplImage *sal = combine(scales, sizeof(scales)/sizeof(IplImage*));
IplImage *res = resize2(sal, cvGetSize(img));
cvReleaseImage(&s1);
cvReleaseImage(&s2);
cvReleaseImage(&s3);
cvReleaseImage(&s4);
cvReleaseImage(&sal);
return res;
}
#if 0
int main(int argc, char **argv)
{
if (argc < 2) print_usage(argv);
IplImage *img = alignedImageFrom(argv[1], 8);
char labels[1024], labeli[1024];
printf("sal: %s\n", argv[1]);
snprintf(labels, sizeof(labels), "saliency: %s", name(argv[1]));
snprintf(labeli, sizeof(labeli), "img: %s", name(argv[1]));
IplImage *res = saliency(img);
if (argc < 3) {
cvNamedWindow(labels, 1);
cvMoveWindow(labels, img->width, 0);
cvShowImage(labeli, img);
cvShowImage(labels, res);
cvWaitKey(0);
} else write2file(argv[2], res);
cvReleaseImage(&img);
cvReleaseImage(&res);
return 0;
}
#endif