-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathconcept.py
142 lines (111 loc) · 3.78 KB
/
concept.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
from __future__ import annotations
import functools
import itertools
from abc import ABC, abstractmethod
from dataclasses import dataclass
from random import Random
from typing import Generator, Iterator
import numpy as np
class BaseConcept(ABC):
def generate(self, *, lo: int = 1, hi: int = 30, seed: int) -> Generator[int, None, None]:
rng = Random(seed)
yield from (
num
for num in rng.sample(range(lo, hi+1), hi-lo+1)
if self._accept(num, rng=rng)
)
@abstractmethod
def _accept(self, num: int, **kwargs) -> bool | np.ndarray:
...
def __and__(self, oth: BaseConcept) -> BaseConcept:
return AndConcept(self, oth)
class AndConcept(BaseConcept):
def __init__(self, a: BaseConcept, b: BaseConcept) -> None:
self._a = a
self._b = b
def _accept(self, num: int, **kwargs) -> bool | np.ndarray:
return self._a._accept(num, **kwargs) and self._b._accept(num, **kwargs)
class MultipleConcept(BaseConcept):
def __init__(self, factor: int) -> None:
self._factor = factor
def _accept(self, num: int | np.ndarray, **kwargs) -> bool | np.ndarray:
return num % self._factor == 0
class IntervalConcept(BaseConcept):
def __init__(self, lo: int, hi: int) -> None:
self._lo = lo
self._hi = hi
def _accept(self, num: int | np.ndarray, **kwargs) -> bool | np.ndarray:
return (self._lo <= num) & (num <= self._hi)
class NonsenseConcept(BaseConcept):
def __init__(self, p_acc: float) -> None:
self._p = p_acc
@functools.lru_cache(maxsize=None)
def _accept(self, num: int, rng: Random, **kwargs) -> bool:
return rng.random() < self._p
@dataclass
class Prompt:
concept: BaseConcept
qty: int
seed: int
def __iter__(self) -> Iterator[int]:
return itertools.islice(self.concept.generate(seed=self.seed), self.qty)
def truth(self) -> Generator[int, None, None]:
yield from self.concept.generate(seed=self.seed)
def __hash__(self) -> int:
return hash(tuple(self))
class PromptGenerator:
def __init__(self) -> None:
self.prompt_classes: list[tuple[list[Prompt], int]] = []
def __len__(self) -> int:
return sum(qty for prompt_class, qty in self.prompt_classes)
def register(self, qty: int, prompt_class: list[Prompt]) -> None:
self.prompt_classes.append((prompt_class, qty))
def generate(self, seed: int) -> list[dict]:
rng = Random(seed)
return [
{
"id": hex(hash(prompt))[-7:],
"prompt": list(prompt),
"truth": list(prompt.truth()),
}
for prompt_class, qty in self.prompt_classes
for prompt in rng.sample(prompt_class, qty)
]
def main() -> None:
gen = PromptGenerator()
for i in range(2, 6):
qty = 4 if i < 4 else 3
gen.register(
6,
[
Prompt(concept=MultipleConcept(i), qty=qty, seed=seed)
for seed in range(10, 16)
],
)
for i in range(3):
gen.register(
3,
[
Prompt(concept=IntervalConcept(10*i+1, 10*(i+1)), qty=4, seed=seed)
for seed in range(20, 23)
],
)
gen.register(
6,
[
Prompt(concept=NonsenseConcept(0.25), qty=3, seed=i)
for i in range(30, 36)
]
)
# for i in range(3):
# gen.register(
# 2,
# [
# Prompt(concept=MultipleConcept(2) & IntervalConcept(10*i+1, 10*(i+1)), qty=3, seed=seed)
# for seed in range(40, 42)
# ]
# )
for s in gen.generate(1):
print(s)
if __name__ == "__main__":
main()