-
Notifications
You must be signed in to change notification settings - Fork 22
/
evaluate.py
187 lines (162 loc) · 8.26 KB
/
evaluate.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
import argparse
import os
import time
import logging
import torch
import torch.nn as nn
import torch.nn.parallel
import torch.backends.cudnn as cudnn
import torch.optim
import torch.utils.data
import models
import torch.distributed as dist
from data import DataRegime
from utils.log import setup_logging, ResultsLog, save_checkpoint
from utils.optim import OptimRegime
from utils.cross_entropy import CrossEntropyLoss
from utils.misc import torch_dtypes
from utils.param_filter import FilterModules, is_bn
from datetime import datetime
from ast import literal_eval
from trainer import Trainer
model_names = sorted(name for name in models.__dict__
if name.islower() and not name.startswith("__")
and callable(models.__dict__[name]))
parser = argparse.ArgumentParser(description='PyTorch ConvNet Evaluation')
parser.add_argument('evaluate', type=str,
help='evaluate model FILE on validation set')
parser.add_argument('--results-dir', metavar='RESULTS_DIR', default='./results',
help='results dir')
parser.add_argument('--save', metavar='SAVE', default='',
help='saved folder')
parser.add_argument('--datasets-dir', metavar='DATASETS_DIR', default='~/Datasets',
help='datasets dir')
parser.add_argument('--dataset', metavar='DATASET', default='imagenet',
help='dataset name or folder')
parser.add_argument('--model', '-a', metavar='MODEL', default='alexnet',
choices=model_names,
help='model architecture: ' +
' | '.join(model_names) +
' (default: alexnet)')
parser.add_argument('--input-size', type=int, default=None,
help='image input size')
parser.add_argument('--model-config', default='',
help='additional architecture configuration')
parser.add_argument('--dtype', default='float',
help='type of tensor: ' +
' | '.join(torch_dtypes.keys()) +
' (default: float)')
parser.add_argument('--device', default='cuda',
help='device assignment ("cpu" or "cuda")')
parser.add_argument('--device-ids', default=[0], type=int, nargs='+',
help='device ids assignment (e.g 0 1 2 3')
parser.add_argument('--world-size', default=-1, type=int,
help='number of distributed processes')
parser.add_argument('--local_rank', default=-1, type=int,
help='rank of distributed processes')
parser.add_argument('--dist-init', default='env://', type=str,
help='init used to set up distributed training')
parser.add_argument('--dist-backend', default='nccl', type=str,
help='distributed backend')
parser.add_argument('-j', '--workers', default=8, type=int, metavar='N',
help='number of data loading workers (default: 8)')
parser.add_argument('-b', '--batch-size', default=256, type=int,
metavar='N', help='mini-batch size (default: 256)')
parser.add_argument('--label-smoothing', default=0, type=float,
help='label smoothing coefficient - default 0')
parser.add_argument('--mixup', default=None, type=float,
help='mixup alpha coefficient - default None')
parser.add_argument('--duplicates', default=1, type=int,
help='number of augmentations over singel example')
parser.add_argument('--chunk-batch', default=1, type=int,
help='chunk batch size for multiple passes (training)')
parser.add_argument('--augment', action='store_true', default=False,
help='perform augmentations')
parser.add_argument('--cutout', action='store_true', default=False,
help='cutout augmentations')
parser.add_argument('--autoaugment', action='store_true', default=False,
help='use autoaugment policies')
parser.add_argument('--avg-out', action='store_true', default=False,
help='average outputs')
parser.add_argument('--print-freq', '-p', default=10, type=int,
metavar='N', help='print frequency (default: 10)')
parser.add_argument('--resume', default='', type=str, metavar='PATH',
help='path to latest checkpoint (default: none)')
parser.add_argument('--seed', default=123, type=int,
help='random seed (default: 123)')
def main():
args = parser.parse_args()
main_worker(args)
def main_worker(args):
global best_prec1, dtype
best_prec1 = 0
dtype = torch_dtypes.get(args.dtype)
torch.manual_seed(args.seed)
time_stamp = datetime.now().strftime('%Y-%m-%d_%H-%M-%S')
if args.evaluate:
args.results_dir = '/tmp'
if args.save is '':
args.save = time_stamp
save_path = os.path.join(args.results_dir, args.save)
args.distributed = args.local_rank >= 0 or args.world_size > 1
if not os.path.exists(save_path) and not (args.distributed and args.local_rank > 0):
os.makedirs(save_path)
setup_logging(os.path.join(save_path, 'log.txt'),
resume=args.resume is not '',
dummy=args.distributed and args.local_rank > 0)
results_path = os.path.join(save_path, 'results')
results = ResultsLog(
results_path, title='Training Results - %s' % args.save)
if 'cuda' in args.device and torch.cuda.is_available():
torch.cuda.manual_seed_all(args.seed)
torch.cuda.set_device(args.device_ids[0])
cudnn.benchmark = True
else:
args.device_ids = None
if not os.path.isfile(args.evaluate):
parser.error('invalid checkpoint: {}'.format(args.evaluate))
checkpoint = torch.load(args.evaluate, map_location="cpu")
# Overrride configuration with checkpoint info
args.model = checkpoint.get('model', args.model)
args.model_config = checkpoint.get('config', args.model_config)
logging.info("saving to %s", save_path)
logging.debug("run arguments: %s", args)
logging.info("creating model %s", args.model)
# create model
model = models.__dict__[args.model]
model_config = {'dataset': args.dataset}
if args.model_config is not '':
model_config = dict(model_config, **literal_eval(args.model_config))
model = model(**model_config)
logging.info("created model with configuration: %s", model_config)
num_parameters = sum([l.nelement() for l in model.parameters()])
logging.info("number of parameters: %d", num_parameters)
# load checkpoint
model.load_state_dict(checkpoint['state_dict'])
logging.info("loaded checkpoint '%s' (epoch %s)",
args.evaluate, checkpoint['epoch'])
# define loss function (criterion) and optimizer
loss_params = {}
if args.label_smoothing > 0:
loss_params['smooth_eps'] = args.label_smoothing
criterion = getattr(model, 'criterion', nn.NLLLoss)(**loss_params)
criterion.to(args.device, dtype)
model.to(args.device, dtype)
# Batch-norm should always be done in float
if 'half' in args.dtype:
FilterModules(model, module=is_bn).to(dtype=torch.float)
trainer = Trainer(model, criterion,
device_ids=args.device_ids, device=args.device, dtype=dtype,
mixup=args.mixup, print_freq=args.print_freq)
# Evaluation Data loading code
val_data = DataRegime(getattr(model, 'data_eval_regime', None),
defaults={'datasets_path': args.datasets_dir, 'name': args.dataset, 'split': 'val', 'augment': args.augment,
'input_size': args.input_size, 'batch_size': args.batch_size, 'shuffle': False, 'duplicates': args.duplicates, 'autoaugment': args.autoaugment,
'cutout': {'holes': 1, 'length': 16} if args.cutout else None, 'num_workers': args.workers, 'pin_memory': True, 'drop_last': False})
results = trainer.validate(val_data.get_loader(),
duplicates=val_data.get('duplicates'),
average_output=args.avg_out)
logging.info(results)
return results
if __name__ == '__main__':
main()