-
Notifications
You must be signed in to change notification settings - Fork 0
/
gradient_descent.py
78 lines (51 loc) · 1.58 KB
/
gradient_descent.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
import numpy as np
import matplotlib.pyplot as plt
class Data:
def __init__(self, x=[], y=[]):
self.x = np.array(x)
self.y = np.array(y)
if not x or not y or len(x) is not len(y):
raise ValueError('x and y muse be same size and non-empty')
def plot(self, best_fit=False, title='', xlabel='', ylabel=''):
plt.title(title)
plt.xlabel(xlabel)
plt.ylabel(ylabel)
plt.scatter(self.x, self.y)
if best_fit:
t0, t1 = self.grad_des()
print(type(t1))
xs = np.array(np.arange(min(self.x), max(self.x), 0.0001))
line = (t0 + (t1*xs)).astype(np.int)
plt.plot(self.x, [t0 + (t1*i) for i in self.x])
print(t0, t1)
plt.show()
hypothesis = lambda self, t0, t1,: t0 + (t1*self.x)
def cost(self, t0=0, t1=1):
m = len(self.x)
sum_error = sum(np.power(self.hypothesis(t0, t1) - self.y, 2))
J = (1.0/(2*m))*sum_error
return J
def gradient(self, t0, t1):
m = len(self.x)
derive_t0 = (1/m) * sum((self.hypothesis(t0, t1) - self.y))
derive_t1 = (1/m) * sum((self.hypothesis(t0, t1) - self.y) * self.x)
return derive_t0, derive_t1
def grad_des(self, learning_rate=0.001):
theta0 = 0
theta1 = 0
alpha = learning_rate # step per iter
diff = 99999999999999
while(diff > 1e-40):
d_t0, d_t1 = self.gradient(theta0, theta1)
temp0 = theta0 - (alpha*d_t0)
temp1 = theta1 - (alpha*d_t1)
diff = np.power((theta0 + theta1)/2 - (temp0 + temp1)/2, 2)
theta0 = temp0
theta1 = temp1
print(diff)
return theta0, theta1
def model(self):
pass
# return t0, t1
d = Data(x=[1, 2, 3, 4, 5, ], y=[2, 4, 6, 8, 10])
d.plot(best_fit=True)