-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy path5problem.py
176 lines (155 loc) · 6.98 KB
/
5problem.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
from __future__ import print_function
import collections
import math
import numpy as np
import os
import random
import tensorflow as tf
import zipfile
from matplotlib import pylab
from six.moves import range
from six.moves.urllib.request import urlretrieve
from sklearn.manifold import TSNE
import arabic_reshaper
from bidi.algorithm import get_display
def make_farsi_text(x):
reshaped_text = arabic_reshaper.reshape(x)
farsi_text = get_display(reshaped_text)
return farsi_text
filename = 'D:\\Coding\\tutorial\\mrshabanali3.txt'
fin2=open(filename,'r',encoding='utf-8').read()
words=fin2.split()
print('Data size %d' % len(words))
vocabulary_size = 10000
def build_dataset(words):
count=[['UNK',-1]]
count.extend(collections.Counter(words).most_common(vocabulary_size-1))
dictionary=dict()
for word,_ in count:
dictionary[word]=len(dictionary)
data=list()
unk_count=0
for word in words:
if word in dictionary:
data.append(dictionary[word])
else:
data.append(0)
unk_count=unk_count+1
count[0][1]=unk_count
reverese_dictionary=dict(zip(dictionary.values(),dictionary.keys()))
return data,count,dictionary,reverese_dictionary
data,count,dictionary,reverese_dictionary=build_dataset(words)
print(data[:10])
del words
data_index=0
def generate_batch(batch_size,skip_window):
global data_index
span= 2*skip_window+1
batch= np.ndarray(shape=(batch_size, span-1),dtype=np.int32)
labels= np.ndarray(shape=(batch_size,1),dtype=np.int32)
buffer=collections.deque(maxlen=span)
for _ in range(span):
buffer.append(data[data_index])
data_index = (data_index + 1) % len(data)
target = skip_window
for i in range(batch_size):
for j in range(skip_window*2):
if j<skip_window:
batch[i,j]=buffer[target-skip_window+j]
elif j>=skip_window:
batch[i,j]=buffer[target-skip_window+j+1]
# [buffer[target-skip_window::target-1],buffer[target+1::target+skip_window]]
labels[i,0]=buffer[target]
buffer.append(data[data_index])
data_index = (data_index + 1) % len(data)
return batch, labels
# for i in range (batch_size//num_skips):
# target= skip_window
# targets_to_avoid=[skip_window]
# for j in range(num_skips):
# while target in targets_to_avoid:
# target = random.randint(0, span - 1)
# targets_to_avoid.append(target)
# batch[j+i*num_skips]=buffer[skip_window]
# labels[j+i*num_skips,0]=buffer[target]
# buffer.append(data[data_index])
# data_index=(data_index+1)%len(data)
# return batch, labels
print('data:', [reverese_dictionary[di] for di in data[:8]])
for num_skips, skip_window in [(2, 2), (4, 2)]:
data_index = 0
batch, labels = generate_batch(batch_size=8, skip_window=skip_window)
print('\nwith num_skips = %d and skip_window = %d:' % (num_skips, skip_window))
print(' batch:', [[reverese_dictionary[w] for w in bi] for bi in batch])
print(' labels:', [reverese_dictionary[li] for li in labels.reshape(8)])
batch_size = 128
embedding_size = 128 # Dimension of the embedding vector.
skip_window = 2 # How many words to consider left and right.
num_skips = 4 # How many times to reuse an input to generate a label.
# We pick a random validation set to sample nearest neighbors. here we limit the
# validation samples to the words that have a low numeric ID, which by
# construction are also the most frequent.
valid_size = 16 # Random set of words to evaluate similarity on.
valid_window = 100 # Only pick dev samples in the head of the distribution.
valid_examples = np.array(random.sample(range(valid_window), valid_size))
num_sampled = 64 # Number of negative examples to sample.
graph = tf.Graph()
with graph.as_default(),tf.device('/cpu:0'):
# Input data.
train_dataset = tf.placeholder(tf.int32, shape=[batch_size,2*skip_window])
train_labels = tf.placeholder(tf.int32, shape=[batch_size, 1])
valid_dataset = tf.constant(valid_examples, dtype=tf.int32)
embeddings=tf.Variable(tf.random_uniform([vocabulary_size,embedding_size],-1.0,1.0))
softmax_weights =tf.Variable(tf.truncated_normal([vocabulary_size,embedding_size],stddev=1.0/math.sqrt(embedding_size)))
softmax_biases = tf.Variable(tf.zeros([vocabulary_size]))
embed=tf.nn.embedding_lookup(embeddings,train_dataset)
loss=tf.reduce_mean(tf.nn.sampled_softmax_loss(weights=softmax_weights,biases=softmax_biases,inputs=tf.reduce_sum(embed, 1),labels=train_labels,num_sampled=num_sampled,num_classes=vocabulary_size))
optimizer =tf.train.AdagradOptimizer(1.0).minimize(loss)
norm = tf.sqrt(tf.reduce_sum(tf.square(embeddings), 1, keep_dims=True))
normalized_embeddings = embeddings / norm
valid_embeddings = tf.nn.embedding_lookup(
normalized_embeddings, valid_dataset)
similarity = tf.matmul(valid_embeddings, tf.transpose(normalized_embeddings))
num_steps= 100001
with tf.Session(graph=graph) as session:
tf.global_variables_initializer().run()
print('Hey Buddy')
average_loss=0
for step in range(num_steps):
batch_data, batch_labels= generate_batch(batch_size,skip_window)
feed_dict={train_dataset:batch_data,train_labels:batch_labels}
_,l=session.run([optimizer,loss],feed_dict=feed_dict)
average_loss+=l
if step % 2000 == 0:
if step > 0:
average_loss = average_loss / 2000
# The average loss is an estimate of the loss over the last 2000 batches.
print('Average loss at step %d: %f' % (step, average_loss))
average_loss = 0
if step%10000==0:
sim=similarity.eval()
for i in range(valid_size):
valid_words= reverese_dictionary[valid_examples[i]]
top_k=8
nearest = (-sim[i,:]).argsort()[1:top_k+1]
log='nearest to %s'% valid_words
for k in range(top_k):
close_word = reverese_dictionary[nearest[k]]
log = '%s %s,' % (log, close_word)
print(log)
final_embeddings = normalized_embeddings.eval()
num_points = 500
tsne= TSNE(perplexity=30,init='pca',n_iter=5000,method='exact')
two_d_embedding=tsne.fit_transform(final_embeddings[:num_points,:])
def plot(embeddings, labels):
assert embeddings.shape[0] >= len(labels), 'More labels than embeddings'
pylab.figure(figsize=(15,15)) # in inches
for i, label in enumerate(labels):
x, y = embeddings[i,:]
pylab.scatter(x, y)
pylab.annotate(make_farsi_text(label), xy=(x, y), xytext=(5, 2), textcoords='offset points',
ha='right', va='bottom')
pylab.show()
words = [reverese_dictionary[i] for i in range( num_points)]
plot(two_d_embedding, words)
#Testing changes