From 934ed49be6da4ae0f4a10ced4b3b92f4bcfea990 Mon Sep 17 00:00:00 2001 From: Jens Lindahl Date: Thu, 5 Oct 2017 19:47:47 +0200 Subject: [PATCH] yolo-tiny to tiny-yolo no such file as cfg/yolo-tiny.cfg. Changed all related occurrences --- README.md | 14 +++++++------- 1 file changed, 7 insertions(+), 7 deletions(-) diff --git a/README.md b/README.md index beb1cf807..b00394c05 100644 --- a/README.md +++ b/README.md @@ -88,14 +88,14 @@ flow --h First, let's take a closer look at one of a very useful option `--load` ```bash -# 1. Load yolo-tiny.weights -flow --model cfg/yolo-tiny.cfg --load bin/yolo-tiny.weights +# 1. Load tiny-yolo.weights +flow --model cfg/tiny-yolo.cfg --load bin/tiny-yolo.weights # 2. To completely initialize a model, leave the --load option flow --model cfg/yolo-new.cfg # 3. It is useful to reuse the first identical layers of tiny for `yolo-new` -flow --model cfg/yolo-new.cfg --load bin/yolo-tiny.weights +flow --model cfg/yolo-new.cfg --load bin/tiny-yolo.weights # this will print out which layers are reused, which are initialized ``` @@ -103,12 +103,12 @@ All input images from default folder `sample_img/` are flowed through the net an ```bash # Forward all images in sample_img/ using tiny yolo and 100% GPU usage -flow --imgdir sample_img/ --model cfg/yolo-tiny.cfg --load bin/yolo-tiny.weights --gpu 1.0 +flow --imgdir sample_img/ --model cfg/tiny-yolo.cfg --load bin/tiny-yolo.weights --gpu 1.0 ``` json output can be generated with descriptions of the pixel location of each bounding box and the pixel location. Each prediction is stored in the `sample_img/out` folder by default. An example json array is shown below. ```bash # Forward all images in sample_img/ using tiny yolo and JSON output. -flow --imgdir sample_img/ --model cfg/yolo-tiny.cfg --load bin/yolo-tiny.weights --json +flow --imgdir sample_img/ --model cfg/tiny-yolo.cfg --load bin/tiny-yolo.weights --json ``` JSON output: ```json @@ -127,7 +127,7 @@ Training is simple as you only have to add option `--train`. Training set and an ```bash # Initialize yolo-new from yolo-tiny, then train the net on 100% GPU: -flow --model cfg/yolo-new.cfg --load bin/yolo-tiny.weights --train --gpu 1.0 +flow --model cfg/yolo-new.cfg --load bin/tiny-yolo.weights --train --gpu 1.0 # Completely initialize yolo-new and train it with ADAM optimizer flow --model cfg/yolo-new.cfg --train --trainer adam @@ -143,7 +143,7 @@ flow --train --model cfg/yolo-new.cfg --load -1 flow --model cfg/yolo-new.cfg --load 1500 # Fine tuning yolo-tiny from the original one -flow --train --model cfg/yolo-tiny.cfg --load bin/yolo-tiny.weights +flow --train --model cfg/tiny-yolo.cfg --load bin/tiny-yolo.weights ``` Example of training on Pascal VOC 2007: