-
Notifications
You must be signed in to change notification settings - Fork 0
/
proof-template.tex
289 lines (201 loc) · 9.41 KB
/
proof-template.tex
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
\documentclass[12pt]{article}
\usepackage{fancyhdr} % For the customized heading
\usepackage[english]{babel}
\usepackage[utf8x]{inputenc}
\usepackage[most]{tcolorbox}
\usepackage{multicol}
\usepackage{adjustbox}
\usepackage{amsmath,amsthm,amsfonts,amssymb} % For math symbols
\usepackage{extramarks}
\usepackage{graphicx} % For adding pictures
\usepackage{booktabs}
\usepackage{tabu}
\usepackage[T1]{fontenc}
\usepackage{enumitem}
\usepackage[parfill]{parskip}
\usepackage{changepage}
\usepackage{scrextend}
\usepackage{gauss}% http://ctan.org/pkg/gauss
\usepackage{hyperref}
\usepackage{mathtools}
\usepackage{calc}
\usepackage{scrextend}
%% Packages for APA bibliographies
\usepackage{apacite} % for the references page
\usepackage{url} % for hyperlinks in references
\usepackage{empheq}
\newtcolorbox[auto counter]{lin-proof}[1][]
{colframe=blue!30,
colback=white,
sharp corners,
title=\emph{Proof},
enhanced,
coltitle=black,
fonttitle=\bfseries,
attach boxed title to top left={yshift*=-\tcboxedtitleheight/2, xshift=3mm},
boxed title style={sharp corners, colback=blue!30},
#1
}
\newtcolorbox[auto counter]{solution}[1][]
{colframe=blue!20,
colback=white,
sharp corners,
title=Solution,
enhanced,
fontupper=\linespread{1.0}\selectfont,
coltitle=black,
fonttitle=\bfseries,
attach boxed title to top left={yshift*=-\tcboxedtitleheight/2, xshift=3mm},
boxed title style={sharp corners, colback=blue!20},
#1
}
\newtcbox{\boxedeq}[1][]{%
nobeforeafter, math upper, tcbox raise base,
enhanced, colframe=black,
colback=white, boxrule=0.5pt,
#1}
\newenvironment{amatrix}[1]{
\left[\begin{array}{@{}*{#1}{c}|c@{}}
}{
\end{array}\right]
}
%% BASIC DOCUMENT SETTINGS %%
\graphicspath{ {./images/} }
\topmargin=-0.45in
\evensidemargin=0in
\oddsidemargin=0in
\textwidth=6.5in
\textheight=9.0in
\headsep=0.25in
\linespread{1.1}
\pagestyle{fancy}
\lhead{\hmwkAuthorName}
\chead{}
\rhead{\hmwkTitle}
\lfoot{\lastxmark}
\cfoot{\thepage}
\newcommand{\hmwkTitle}{\textbf{MATH 208 HW 4.1: Subspaces}}
\newcommand{\hmwkDueDate}{January 17, 2019}
\newcommand{\hmwkClass}{\textbf{MATH 238 - Differential Equations}}
\newcommand{\hmwkClassTime}{Section A}
\newcommand{\hmwkClassInstructor}{Timothy Trammel}
\newcommand{\hmwkAuthorName}{\textbf{Isabel Giang}}
\newcommand{\continueNextPage}{\begin{flushright}\textit{Continued on the next page...}
\end{flushright} \pagebreak}
\renewcommand\headrulewidth{0.4pt}
\renewcommand\footrulewidth{0.4pt}
\setlength\parindent{0pt}
%% TITLE PAGE SETTINGS %%
\title{
\vspace{2in}
\textmd{\textbf{\hmwkTitle}}\\
\large\vspace{0.1in}{\hmwkClass}\\
\large\vspace{0.1in}{\textbf{Date: }\hmwkDueDate}\\
\vspace{0.1in}{\textbf{Professor: }\hmwkClassInstructor}
\vspace{1in}
}
\author{\hmwkAuthorName}
\date{}
\renewcommand{\vec}[1]{\mathbf{#1}}
\renewcommand\qedsymbol{$\blacksquare$}
\newcommand{\lintrans}{T: \mathbf{R^{m}} \rightarrow \mathbf{R^{n}}}
\newenvironment{question}[1]{
\textbf{#1}.
}
\NewEnviron{elaboration}{
\par
\begin{tikzpicture}
\node[rectangle,minimum width=0.9\textwidth] (m) {\begin{minipage}{0.85\textwidth}\BODY\end{minipage}};
\draw[dashed] (m.south west) rectangle (m.north east);
\end{tikzpicture}
}
\begin{document}
\begin{elaboration}
\textbf{Definition of a Subspace}:
A subset $S$ of $\vec{R^n}$ is a subspace if $S$ satisfies the following three conditions:
\begin{enumerate}[label=(\roman{enumi})]
\item $S$ contains $\vec{0}$, the zero vector.
\item If $\vec{u}, \vec{v}$ are in $S$, then $\vec{u + v}$ is in $S$. This is known as \emph{closure under addition}.
\item If $\vec{u}$ is in $S$, then $r\vec{u}$ is in $S$ for every real number $r$. This is known as \emph{closure under scalar multiplication.}
\end{enumerate}
We can determine if this subset is a subspace by checking if it satisfies all three of these conditions.
We can also use \textbf{Theorem 4.2}, which states: Let $S$ = span($\{\vec{u_1}, \vec{u_2},..., \vec{u_m} \}$) be a subset of $R^n$. Then $S$ is a subspace of $R^n$.
\end{elaboration}
\pagebreak
\section*{Proofs}
\textbf{63.} Prove that if $\vec{b} \neq 0$, then the set of solutions to $A\vec{x} = \vec{b}$ is not a subspace.
\begin{lin-proof}
We will prove this by assuming the contrapositive.
Assume that the set of solutions to $A\vec{x} = \vec{b}$ is in fact a subspace. If this is the case, then the set of solutions must contain the zero vector $\vec{0}$.
This also means that the zero vector $\vec{0}$ must satisfy the matrix equation $A\vec{x} = \vec{b}$, such that $A\vec{0} = \vec{x}$.
We know this isn't true, because $A\vec{0} = \vec{0}$, which means that b must be $\vec{0}$, but it is given that $b \neq \vec{0}$.
Thus, since the only way for the set of solutions to be a subspace is for it to contain the zero vector is if $b = \vec{0}$, which is not true, the set of solutions cannot be a subspace.
\begin{flushright}$\blacksquare$ \end{flushright}
\end{lin-proof}
\textbf{69.} Let $A$ be a matrix and $T(\vec{x}) = A\vec{x}$ a linear transformation. Show that $ker(T) = \{\vec{0}\}$ if and only if the columns of $A$ are linearly independent.
\begin{lin-proof}
The transformation $T(\vec{x}) = A\vec{x}$ is linear, so we know that the following conditions must be satisfied:~\\
\begin{elaboration}
\textbf{Definition of a Linear Transformation}
\begin{enumerate}[label=\alph*)]
\item $T(\vec{u} + \vec{v}) = T(\vec{u}) + T(\vec{v})$
\item $T(c\vec{u}) = cT(\vec{u})$
\end{enumerate}
\end{elaboration}
Recall that the kernel of $T$, ker$(T)$ is the set of vectors $\vec{x}$ such that $T(\vec{x}) = \vec{0}$.
Also recall that in order for a set of vectors to be linearly independent, the only solution to the vector equation
$$\vec{x_1} + \vec{x_2} + \dots + \vec{x_n} = \vec{0}$$ must be the trivial solution.
Since ker$(T)$ is the set of vectors that satisfies T$(\vec{x}) = \vec{0}$ and the matrix equation $A\vec{x} = 0$ corresponds with this matrix, the only vector in ker$(T)$ must be the trivial solution.
So ker$(T)$ must be equal to $\vec{0}$ - in other words, the trivial solution - if and only if the columns of $A$ are linearly independent.
\begin{flushright}$\blacksquare$ \end{flushright}
\end{lin-proof}
\pagebreak
\textbf{70.} If $T$ is a linear transformation, show that $\vec{0}$ is always in ker($T$).
\begin{lin-proof}
The transformation $T$ is linear, so we know that the following conditions must be satisfied:~\\
\begin{elaboration}
\textbf{Definition of a Linear Transformation}
\begin{enumerate}[label=\alph*)]
\item $T(\vec{u} + \vec{v}) = T(\vec{u}) + T(\vec{v})$
\item $T(c\vec{u}) = cT(\vec{u})$
\end{enumerate}
\end{elaboration}
Recall that the kernel of $T$, ker$(T)$ is the set of vectors $\vec{x}$ such that $T(\vec{x}) = \vec{0}$.
Since $T(c\vec{u}) = cT(\vec{u})$ by the definition of a linear transformation, we know that $T(0\vec{u}) = 0T(\vec{u})$ This must equal the zero vector $\vec{0}$.
Since $T(0) = \vec{0}$, the zero vector is part of the set of vectors where $T(\vec{x}) = \vec{0}$, so the zero vector $\vec{0}$ must be in ker$(T)$.
\begin{flushright}$\blacksquare$ \end{flushright}
\end{lin-proof}
\textbf{71.} Prove that if $u$ and $v$ are in a subspace $S$, then so is $\vec{u - v}$.
\begin{lin-proof}
If $\vec{u}$ and $\vec{v}$ are in the subspace $S$, this means that all linear combinations of $\vec{u}$ and $\vec{v}$ are also in the subspace, since the definition of a subspace requires that the closure properties - closure under addition and closure under scalar multiplication - be satisfied.
Particularly, since $S$ is closed under addition, $\vec{u} + \vec{-v} = \vec{u + v}$ must be in $S$.
The subtraction of vectors can be understood as the addition of negative scalar multiples, which is satisfied by the closure properties.
\begin{flushright}$\blacksquare$ \end{flushright}
\end{lin-proof}
\pagebreak
\textbf{72.} Prove Theorem 4.6: If $T$ is a linear transformation, then $T$ is one-to-one if and only if ker($T$) = $\{\vec{0}\}$.
\begin{lin-proof}
\begin{elaboration}
\textbf{Theorem 4.6}
Given a linear transformation $T: \vec{R^{m}} \rightarrow \vec{R^{n}}$, $T$ must be one-to-one if and only if ker$(T)$ = $\lbrace \vec{0} \rbrace$.
\end{elaboration} ~\\
\underline{Prove that $T$ being one-to-one implies that ker$(T)$ = $\lbrace \vec{0} \rbrace$.}
\begin{addmargin}[1em]{2em}
Assume that $T$ is one-to-one. This means that there is at most one solution to $T(\vec{x})$. We know this because of Theorem 3.5. ~\\
\begin{elaboration}
\textbf{Theorem 3.5}
Let $T$ be a linear transformation. $T$ is one-to-one if and only if $T(\vec{x}) = \vec{0}$ has only the trivial solution $\vec{x} = \vec{0}$.
\end{elaboration}
Since T is a linear transformation, we know that $T(\vec{0}) = 0$ since $T(c\vec{0}) = cT(\vec{0}) = \vec{0}$.
Thus, ker($T$) = $\lbrace \vec{0} \rbrace$~\\
\end{addmargin}
\underline{Prove that implies that ker$(T)$ = $\lbrace \vec{0} \rbrace$ implies that $T$ is one-to-one.}
\begin{addmargin}[1em]{2em}
Assume that ker$(T)$ only contains the trivial solution in its set of vectors.
If $T(\vec{u}) = T(\vec{v})$, then $T(u) - T(v) = 0$.
This implies that $T(\vec{u} - \vec{v})$ = $\vec{0}$. We know this is true since T is a linear transformation, and $T(\vec{u} + \vec{v}) = T(\vec{u}) + T(\vec{v})$.
Since $T(\vec{x}) = \vec{0})$ only has the trivial solution, if ker$(T)$ = $\lbrace \vec{0} \rbrace$, it follows that $\vec{u - v} = \vec{0}$ and $\vec{u} = \vec{v}$. Thus, $T$ is one-to-one.
\end{addmargin}
\begin{flushright}$\blacksquare$ \end{flushright}
\end{lin-proof}
\end{document}