Skip to content

Commit

Permalink
add qwen2 npu support (#11504)
Browse files Browse the repository at this point in the history
  • Loading branch information
MeouSker77 authored Jul 4, 2024
1 parent 932ef78 commit bb0a840
Show file tree
Hide file tree
Showing 2 changed files with 327 additions and 5 deletions.
27 changes: 22 additions & 5 deletions python/llm/src/ipex_llm/transformers/npu_models/convert.py
Original file line number Diff line number Diff line change
Expand Up @@ -71,15 +71,32 @@ def convert_forward(m, target_m, new_forward):
def optimize_llm(model: torch.nn.Module):
if model.config.model_type == "llama":
from ipex_llm.transformers.npu_models.llama import merge_qkv
model.apply(merge_qkv)
from ipex_llm.transformers.npu_models.llama import merge_mlp
model.apply(merge_qkv)
model.apply(merge_mlp)

from ipex_llm.transformers.npu_models.llama import llama_model_forward
from transformers.models.llama.modeling_llama import LlamaModel
convert_forward(model, LlamaModel, llama_model_forward)
from ipex_llm.transformers.npu_models.llama import llama_attention_forward
from transformers.models.llama.modeling_llama import LlamaAttention
convert_forward(model, LlamaAttention, llama_attention_forward)
from ipex_llm.transformers.npu_models.llama import llama_mlp_forward
from transformers.models.llama.modeling_llama import LlamaModel
from transformers.models.llama.modeling_llama import LlamaAttention
from transformers.models.llama.modeling_llama import LlamaMLP
convert_forward(model, LlamaModel, llama_model_forward)
convert_forward(model, LlamaAttention, llama_attention_forward)
convert_forward(model, LlamaMLP, llama_mlp_forward)

elif model.config.model_type == "qwen2":
from ipex_llm.transformers.npu_models.qwen2 import merge_qkv
from ipex_llm.transformers.npu_models.qwen2 import merge_mlp
model.apply(merge_qkv)
model.apply(merge_mlp)

from ipex_llm.transformers.npu_models.qwen2 import qwen2_model_forward
from ipex_llm.transformers.npu_models.qwen2 import qwen2_attention_forward
from ipex_llm.transformers.npu_models.qwen2 import qwen2_mlp_forward
from transformers.models.qwen2.modeling_qwen2 import Qwen2Model
from transformers.models.qwen2.modeling_qwen2 import Qwen2Attention
from transformers.models.qwen2.modeling_qwen2 import Qwen2MLP
convert_forward(model, Qwen2Model, qwen2_model_forward)
convert_forward(model, Qwen2Attention, qwen2_attention_forward)
convert_forward(model, Qwen2MLP, qwen2_mlp_forward)
305 changes: 305 additions & 0 deletions python/llm/src/ipex_llm/transformers/npu_models/qwen2.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,305 @@
#
# Copyright 2016 The BigDL Authors.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
#
# Some parts of this file is adapted from
# https://github.com/huggingface/transformers/blob/v4.37.0/src/transformers/models/qwen2/modeling_qwen2.py
# which is licensed under Apache License 2.0:
#
# Copyright 2024 The Qwen team, Alibaba Group and the HuggingFace Inc. team. All rights reserved.
#
# This code is based on EleutherAI's GPT-NeoX library and the GPT-NeoX
# and OPT implementations in this library. It has been modified from its
# original forms to accommodate minor architectural differences compared
# to GPT-NeoX and OPT used by the Meta AI team that trained the model.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
#

import math
from typing import Optional, Tuple, Union, List

import torch

from ipex_llm.transformers.npu_models.common import merge_linear
from ipex_llm.transformers.kv import DynamicNormalCache
from ipex_llm.utils.common import invalidInputError

from transformers.models.qwen2.modeling_qwen2 import Qwen2Attention, Qwen2MLP
from transformers.models.qwen2.modeling_qwen2 import apply_rotary_pos_emb, repeat_kv
from transformers.models.qwen2.modeling_qwen2 import _prepare_4d_causal_attention_mask_for_sdpa
from transformers.models.qwen2.modeling_qwen2 import _prepare_4d_causal_attention_mask
from transformers.modeling_outputs import BaseModelOutputWithPast
from transformers.cache_utils import Cache


def merge_qkv(module: torch.nn.Module):
if isinstance(module, Qwen2Attention):
qkv_proj = merge_linear([
module.q_proj,
module.k_proj,
module.v_proj
])
module.qkv_proj = qkv_proj
del module.q_proj, module.k_proj, module.v_proj


def merge_mlp(module: torch.nn.Module):
if isinstance(module, Qwen2MLP):
gate_up_proj = merge_linear([
module.gate_proj,
module.up_proj,
])
module.gate_up_proj = gate_up_proj
del module.gate_proj, module.up_proj


def qwen2_model_forward(
self,
input_ids: torch.LongTensor = None,
attention_mask: Optional[torch.Tensor] = None,
position_ids: Optional[torch.LongTensor] = None,
past_key_values: Optional[List[torch.FloatTensor]] = None,
inputs_embeds: Optional[torch.FloatTensor] = None,
use_cache: Optional[bool] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
):
output_attentions = output_attentions if output_attentions is not None else \
self.config.output_attentions
output_hidden_states = (
output_hidden_states if output_hidden_states is not None else
self.config.output_hidden_states
)
use_cache = use_cache if use_cache is not None else self.config.use_cache

return_dict = return_dict if return_dict is not None else self.config.use_return_dict

# retrieve input_ids and inputs_embeds
if input_ids is not None and inputs_embeds is not None:
invalidInputError(False,
"You cannot specify both decoder_input_ids and "
"decoder_inputs_embeds at the same time")
elif input_ids is not None:
batch_size, seq_length = input_ids.shape
elif inputs_embeds is not None:
batch_size, seq_length, _ = inputs_embeds.shape
else:
invalidInputError(False,
"You have to specify either decoder_input_ids or decoder_inputs_embeds")

if self.gradient_checkpointing and self.training:
if use_cache:
use_cache = False

past_key_values_length = 0

# ipex-llm changes start
if use_cache and not isinstance(past_key_values, DynamicNormalCache):
past_key_values = DynamicNormalCache.from_legacy_cache(past_key_values)
past_key_values_length = past_key_values.get_usable_length(seq_length)
# ipex-llm changes end

if position_ids is None:
device = input_ids.device if input_ids is not None else inputs_embeds.device
position_ids = torch.arange(
past_key_values_length, seq_length + past_key_values_length,
dtype=torch.long, device=device
)
position_ids = position_ids.unsqueeze(0).view(-1, seq_length)
else:
position_ids = position_ids.view(-1, seq_length).long()

if inputs_embeds is None:
inputs_embeds = self.embed_tokens(input_ids)

flash_attn_2 = self._attn_implementation == "flash_attention_2"
if attention_mask is not None and flash_attn_2 and use_cache:

is_padding_right = attention_mask[:, -1].sum().item() != batch_size
if is_padding_right:
invalidInputError(
False,
"You are attempting to perform batched generation with padding_side='right'"
" this may lead to unexpected behaviour for Flash Attention version of Qwen2."
" Make sure to call `tokenizer.padding_side = 'left'` before tokenizing "
"the input. "
)

if self._attn_implementation == "flash_attention_2":
# 2d mask is passed through the layers
attention_mask = attention_mask if (attention_mask is not None and
0 in attention_mask) else None
elif self._attn_implementation == "sdpa" and not output_attentions:
# output_attentions=True can not be supported when using SDPA, and we fall back on
# the manual implementation that requires a 4D causal mask in all cases.
attention_mask = _prepare_4d_causal_attention_mask_for_sdpa(
attention_mask,
(batch_size, seq_length),
inputs_embeds,
past_key_values_length,
)
else:
# 4d mask is passed through the layers
attention_mask = _prepare_4d_causal_attention_mask(
attention_mask,
(batch_size, seq_length),
inputs_embeds,
past_key_values_length,
sliding_window=self.config.sliding_window,
)

hidden_states = inputs_embeds

# decoder layers
all_hidden_states = () if output_hidden_states else None
all_self_attns = () if output_attentions else None
next_decoder_cache = None

for decoder_layer in self.layers:
if output_hidden_states:
all_hidden_states += (hidden_states,)

if self.gradient_checkpointing and self.training:
layer_outputs = self._gradient_checkpointing_func(
decoder_layer.__call__,
hidden_states,
attention_mask,
position_ids,
past_key_values,
output_attentions,
use_cache,
)
else:
layer_outputs = decoder_layer(
hidden_states,
attention_mask=attention_mask,
position_ids=position_ids,
past_key_value=past_key_values,
output_attentions=output_attentions,
use_cache=use_cache,
)

hidden_states = layer_outputs[0]

if use_cache:
next_decoder_cache = layer_outputs[2 if output_attentions else 1]

if output_attentions:
all_self_attns += (layer_outputs[1],)

hidden_states = self.norm(hidden_states)

# add hidden states from the last decoder layer
if output_hidden_states:
all_hidden_states += (hidden_states,)

# ipex-llm changes start
next_cache = next_decoder_cache
# ipex-llm changes end

if not return_dict:
return tuple(v for v in [hidden_states, next_cache,
all_hidden_states, all_self_attns] if v is not None)
return BaseModelOutputWithPast(
last_hidden_state=hidden_states,
past_key_values=next_cache,
hidden_states=all_hidden_states,
attentions=all_self_attns,
)


def qwen2_attention_forward(
self,
hidden_states: torch.Tensor,
attention_mask: Optional[torch.Tensor] = None,
position_ids: Optional[torch.LongTensor] = None,
past_key_value: Optional[Cache] = None,
output_attentions: bool = False,
use_cache: bool = False,
**kwargs,
) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]:
bsz, q_len, _ = hidden_states.size()

qkv = self.qkv_proj(hidden_states)
qkv = qkv.view(bsz, q_len, self.num_heads + 2 * self.num_key_value_heads, self.head_dim)
qkv = qkv.transpose(1, 2)
query_states, key_states, value_states = qkv.split([self.num_heads,
self.num_key_value_heads,
self.num_key_value_heads], dim=1)

kv_seq_len = key_states.shape[-2]
if past_key_value is not None:
kv_seq_len += past_key_value.get_usable_length(kv_seq_len, self.layer_idx)

cos, sin = self.rotary_emb(value_states, seq_len=kv_seq_len)
query_states, key_states = apply_rotary_pos_emb(query_states, key_states,
cos, sin, position_ids)

if past_key_value is not None:
key_states, value_states = past_key_value.update(key_states, value_states,
self.layer_idx, None)

key_states = repeat_kv(key_states, self.num_key_value_groups)
value_states = repeat_kv(value_states, self.num_key_value_groups)

attn_weights = None
if query_states.size(2) == key_states.size(2):
# first token
from intel_npu_acceleration_library.functional import scaled_dot_product_attention
attn_output = scaled_dot_product_attention(
query_states,
key_states,
value_states,
attn_mask=attention_mask,
is_causal=q_len > 1 and bsz == 1,
)
else:
attn_weights = torch.matmul(query_states,
key_states.transpose(2, 3)) / math.sqrt(self.head_dim)
if attention_mask is not None:
attn_weights = attn_weights + attention_mask
# upcast attention to fp32
attn_weights = torch.nn.functional.softmax(attn_weights, dim=-1,
dtype=torch.float32).to(query_states.dtype)
attn_weights = torch.nn.functional.dropout(attn_weights, p=self.attention_dropout,
training=self.training)
attn_output = torch.matmul(attn_weights, value_states)

attn_output = attn_output.transpose(1, 2).contiguous()
attn_output = attn_output.reshape(bsz, q_len, self.hidden_size)

attn_output = self.o_proj(attn_output)

if not output_attentions:
attn_weights = None
return attn_output, attn_weights, past_key_value


def qwen2_mlp_forward(self, x):
gate_up_proj = self.gate_up_proj(x)
gate_proj, up_proj = gate_up_proj.chunk(2, dim=-1)
down_proj = self.down_proj(self.act_fn(gate_proj) * up_proj)
return down_proj

0 comments on commit bb0a840

Please sign in to comment.