diff --git a/README.md b/README.md index fe58a8419eb..9aa8530ab5b 100644 --- a/README.md +++ b/README.md @@ -185,6 +185,7 @@ Please see the **Perplexity** result below (tested on Wikitext dataset using the - [VSCode on GPU](docs/mddocs/DockerGuides/docker_run_pytorch_inference_in_vscode.md): running and developing `ipex-llm` applications in Python using VSCode on Intel GPU ### Use +- [NPU](docs/mddocs/Quickstart/npu_quickstart.md): running `ipex-llm` on Intel **NPU** in both Python and C++ - [llama.cpp](docs/mddocs/Quickstart/llama_cpp_quickstart.md): running **llama.cpp** (*using C++ interface of `ipex-llm`*) on Intel GPU - [Ollama](docs/mddocs/Quickstart/ollama_quickstart.md): running **ollama** (*using C++ interface of `ipex-llm`*) on Intel GPU - [PyTorch/HuggingFace](docs/mddocs/Quickstart/install_windows_gpu.md): running **PyTorch**, **HuggingFace**, **LangChain**, **LlamaIndex**, etc. (*using Python interface of `ipex-llm`*) on Intel GPU for [Windows](docs/mddocs/Quickstart/install_windows_gpu.md) and [Linux](docs/mddocs/Quickstart/install_linux_gpu.md) @@ -252,13 +253,13 @@ Please see the **Perplexity** result below (tested on Wikitext dataset using the ## Verified Models Over 50 models have been optimized/verified on `ipex-llm`, including *LLaMA/LLaMA2, Mistral, Mixtral, Gemma, LLaVA, Whisper, ChatGLM2/ChatGLM3, Baichuan/Baichuan2, Qwen/Qwen-1.5, InternLM* and more; see the list below. -| Model | CPU Example | GPU Example | -|------------|----------------------------------------------------------------|-----------------------------------------------------------------| -| LLaMA *(such as Vicuna, Guanaco, Koala, Baize, WizardLM, etc.)* | [link1](python/llm/example/CPU/Native-Models), [link2](python/llm/example/CPU/HF-Transformers-AutoModels/Model/vicuna) |[link](python/llm/example/GPU/HuggingFace/LLM/vicuna)| -| LLaMA 2 | [link1](python/llm/example/CPU/Native-Models), [link2](python/llm/example/CPU/HF-Transformers-AutoModels/Model/llama2) | [link](python/llm/example/GPU/HuggingFace/LLM/llama2) | -| LLaMA 3 | [link](python/llm/example/CPU/HF-Transformers-AutoModels/Model/llama3) | [link](python/llm/example/GPU/HuggingFace/LLM/llama3) | +| Model | CPU Example | GPU Example | NPU Example | +|------------|----------------------------------------------|----------------------------------------------|----------------------------------------------| +| LLaMA | [link1](python/llm/example/CPU/Native-Models), [link2](python/llm/example/CPU/HF-Transformers-AutoModels/Model/vicuna) |[link](python/llm/example/GPU/HuggingFace/LLM/vicuna)| +| LLaMA 2 | [link1](python/llm/example/CPU/Native-Models), [link2](python/llm/example/CPU/HF-Transformers-AutoModels/Model/llama2) | [link](python/llm/example/GPU/HuggingFace/LLM/llama2) | [Python link](python/llm/example/NPU/HF-Transformers-AutoModels/LLM), [C++ link](python/llm/example/NPU/HF-Transformers-AutoModels/LLM/CPP_Examples) | +| LLaMA 3 | [link](python/llm/example/CPU/HF-Transformers-AutoModels/Model/llama3) | [link](python/llm/example/GPU/HuggingFace/LLM/llama3) | [Python link](python/llm/example/NPU/HF-Transformers-AutoModels/LLM), [C++ link](python/llm/example/NPU/HF-Transformers-AutoModels/LLM/CPP_Examples) | | LLaMA 3.1 | [link](python/llm/example/CPU/HF-Transformers-AutoModels/Model/llama3.1) | [link](python/llm/example/GPU/HuggingFace/LLM/llama3.1) | -| LLaMA 3.2 | | [link](python/llm/example/GPU/HuggingFace/LLM/llama3.2) | +| LLaMA 3.2 | | [link](python/llm/example/GPU/HuggingFace/LLM/llama3.2) | [Python link](python/llm/example/NPU/HF-Transformers-AutoModels/LLM), [C++ link](python/llm/example/NPU/HF-Transformers-AutoModels/LLM/CPP_Examples) | | LLaMA 3.2-Vision | | [link](python/llm/example/GPU/PyTorch-Models/Model/llama3.2-vision/) | | ChatGLM | [link](python/llm/example/CPU/HF-Transformers-AutoModels/Model/chatglm) | | | ChatGLM2 | [link](python/llm/example/CPU/HF-Transformers-AutoModels/Model/chatglm2) | [link](python/llm/example/GPU/HuggingFace/LLM/chatglm2) | @@ -276,13 +277,13 @@ Over 50 models have been optimized/verified on `ipex-llm`, including *LLaMA/LLaM | Phoenix | [link1](python/llm/example/CPU/Native-Models), [link2](python/llm/example/CPU/HF-Transformers-AutoModels/Model/phoenix) | | | StarCoder | [link1](python/llm/example/CPU/Native-Models), [link2](python/llm/example/CPU/HF-Transformers-AutoModels/Model/starcoder) | [link](python/llm/example/GPU/HuggingFace/LLM/starcoder) | | Baichuan | [link](python/llm/example/CPU/HF-Transformers-AutoModels/Model/baichuan) | [link](python/llm/example/GPU/HuggingFace/LLM/baichuan) | -| Baichuan2 | [link](python/llm/example/CPU/HF-Transformers-AutoModels/Model/baichuan2) | [link](python/llm/example/GPU/HuggingFace/LLM/baichuan2) | +| Baichuan2 | [link](python/llm/example/CPU/HF-Transformers-AutoModels/Model/baichuan2) | [link](python/llm/example/GPU/HuggingFace/LLM/baichuan2) | [Python link](python/llm/example/NPU/HF-Transformers-AutoModels/LLM) | | InternLM | [link](python/llm/example/CPU/HF-Transformers-AutoModels/Model/internlm) | [link](python/llm/example/GPU/HuggingFace/LLM/internlm) | | InternVL2 | | [link](python/llm/example/GPU/HuggingFace/Multimodal/internvl2) | | Qwen | [link](python/llm/example/CPU/HF-Transformers-AutoModels/Model/qwen) | [link](python/llm/example/GPU/HuggingFace/LLM/qwen) | | Qwen1.5 | [link](python/llm/example/CPU/HF-Transformers-AutoModels/Model/qwen1.5) | [link](python/llm/example/GPU/HuggingFace/LLM/qwen1.5) | -| Qwen2 | [link](python/llm/example/CPU/HF-Transformers-AutoModels/Model/qwen2) | [link](python/llm/example/GPU/HuggingFace/LLM/qwen2) | -| Qwen2.5 | | [link](python/llm/example/GPU/HuggingFace/LLM/qwen2.5) | +| Qwen2 | [link](python/llm/example/CPU/HF-Transformers-AutoModels/Model/qwen2) | [link](python/llm/example/GPU/HuggingFace/LLM/qwen2) | [Python link](python/llm/example/NPU/HF-Transformers-AutoModels/LLM), [C++ link](python/llm/example/NPU/HF-Transformers-AutoModels/LLM/CPP_Examples) | +| Qwen2.5 | | [link](python/llm/example/GPU/HuggingFace/LLM/qwen2.5) | [Python link](python/llm/example/NPU/HF-Transformers-AutoModels/LLM), [C++ link](python/llm/example/NPU/HF-Transformers-AutoModels/LLM/CPP_Examples) | | Qwen-VL | [link](python/llm/example/CPU/HF-Transformers-AutoModels/Model/qwen-vl) | [link](python/llm/example/GPU/HuggingFace/Multimodal/qwen-vl) | | Qwen2-VL || [link](python/llm/example/GPU/PyTorch-Models/Model/qwen2-vl) | | Qwen2-Audio | | [link](python/llm/example/GPU/HuggingFace/Multimodal/qwen2-audio) | @@ -324,13 +325,15 @@ Over 50 models have been optimized/verified on `ipex-llm`, including *LLaMA/LLaM | CodeGemma | [link](python/llm/example/CPU/HF-Transformers-AutoModels/Model/codegemma) | [link](python/llm/example/GPU/HuggingFace/LLM/codegemma) | | Command-R/cohere | [link](python/llm/example/CPU/HF-Transformers-AutoModels/Model/cohere) | [link](python/llm/example/GPU/HuggingFace/LLM/cohere) | | CodeGeeX2 | [link](python/llm/example/CPU/HF-Transformers-AutoModels/Model/codegeex2) | [link](python/llm/example/GPU/HuggingFace/LLM/codegeex2) | -| MiniCPM | [link](python/llm/example/CPU/HF-Transformers-AutoModels/Model/minicpm) | [link](python/llm/example/GPU/HuggingFace/LLM/minicpm) | +| MiniCPM | [link](python/llm/example/CPU/HF-Transformers-AutoModels/Model/minicpm) | [link](python/llm/example/GPU/HuggingFace/LLM/minicpm) | [Python link](python/llm/example/NPU/HF-Transformers-AutoModels/LLM), [C++ link](python/llm/example/NPU/HF-Transformers-AutoModels/LLM/CPP_Examples) | | MiniCPM3 | | [link](python/llm/example/GPU/HuggingFace/LLM/minicpm3) | | MiniCPM-V | | [link](python/llm/example/GPU/HuggingFace/Multimodal/MiniCPM-V) | | MiniCPM-V-2 | [link](python/llm/example/CPU/HF-Transformers-AutoModels/Model/minicpm-v-2) | [link](python/llm/example/GPU/HuggingFace/Multimodal/MiniCPM-V-2) | -| MiniCPM-Llama3-V-2_5 | | [link](python/llm/example/GPU/HuggingFace/Multimodal/MiniCPM-Llama3-V-2_5) | -| MiniCPM-V-2_6 | [link](python/llm/example/CPU/HF-Transformers-AutoModels/Model/minicpm-v-2_6) | [link](python/llm/example/GPU/HuggingFace/Multimodal/MiniCPM-V-2_6) | +| MiniCPM-Llama3-V-2_5 | | [link](python/llm/example/GPU/HuggingFace/Multimodal/MiniCPM-Llama3-V-2_5) | [Python link](python/llm/example/NPU/HF-Transformers-AutoModels/Multimodal) | +| MiniCPM-V-2_6 | [link](python/llm/example/CPU/HF-Transformers-AutoModels/Model/minicpm-v-2_6) | [link](python/llm/example/GPU/HuggingFace/Multimodal/MiniCPM-V-2_6) | [Python link](python/llm/example/NPU/HF-Transformers-AutoModels/Multimodal) | | StableDiffusion | | [link](python/llm/example/GPU/HuggingFace/Multimodal/StableDiffusion) | +| Bce-Embedding-Base-V1 | | | [Python link](python/llm/example/NPU/HF-Transformers-AutoModels/Multimodal) | +| Speech_Paraformer-Large | | | [Python link](python/llm/example/NPU/HF-Transformers-AutoModels/Multimodal) | ## Get Support - Please report a bug or raise a feature request by opening a [Github Issue](https://github.com/intel-analytics/ipex-llm/issues) diff --git a/README.zh-CN.md b/README.zh-CN.md index 05ce48bcf1f..1740299492c 100644 --- a/README.zh-CN.md +++ b/README.zh-CN.md @@ -185,6 +185,7 @@ See the demo of running [*Text-Generation-WebUI*](https://ipex-llm.readthedocs.i - [VSCode on GPU](docs/mddocs/DockerGuides/docker_run_pytorch_inference_in_vscode.md): 在 Intel GPU 上使用 VSCode 开发并运行基于 Python 的 `ipex-llm` 应用 ### 使用 +- [NPU](docs/mddocs/Quickstart/npu_quickstart.md): 在 Intel **NPU** 上运行 `ipex-llm`(支持 Python 和 C++) - [llama.cpp](docs/mddocs/Quickstart/llama_cpp_quickstart.zh-CN.md): 在 Intel GPU 上运行 **llama.cpp** (*使用 `ipex-llm` 的 C++ 接口*) - [Ollama](docs/mddocs/Quickstart/ollama_quickstart.zh-CN.md): 在 Intel GPU 上运行 **ollama** (*使用 `ipex-llm` 的 C++ 接口*) - [PyTorch/HuggingFace](docs/mddocs/Quickstart/install_windows_gpu.zh-CN.md): 使用 [Windows](docs/mddocs/Quickstart/install_windows_gpu.zh-CN.md) 和 [Linux](docs/mddocs/Quickstart/install_linux_gpu.zh-CN.md) 在 Intel GPU 上运行 **PyTorch**、**HuggingFace**、**LangChain**、**LlamaIndex** 等 (*使用 `ipex-llm` 的 Python 接口*) @@ -252,13 +253,13 @@ See the demo of running [*Text-Generation-WebUI*](https://ipex-llm.readthedocs.i ## 模型验证 50+ 模型已经在 `ipex-llm` 上得到优化和验证,包括 *LLaMA/LLaMA2, Mistral, Mixtral, Gemma, LLaVA, Whisper, ChatGLM2/ChatGLM3, Baichuan/Baichuan2, Qwen/Qwen-1.5, InternLM,* 更多模型请参看下表, -| 模型 | CPU 示例 | GPU 示例 | -|------------|----------------------------------------------------------------|-----------------------------------------------------------------| -| LLaMA *(such as Vicuna, Guanaco, Koala, Baize, WizardLM, etc.)* | [link1](python/llm/example/CPU/Native-Models), [link2](python/llm/example/CPU/HF-Transformers-AutoModels/Model/vicuna) |[link](python/llm/example/GPU/HuggingFace/LLM/vicuna)| -| LLaMA 2 | [link1](python/llm/example/CPU/Native-Models), [link2](python/llm/example/CPU/HF-Transformers-AutoModels/Model/llama2) | [link](python/llm/example/GPU/HuggingFace/LLM/llama2) | -| LLaMA 3 | [link](python/llm/example/CPU/HF-Transformers-AutoModels/Model/llama3) | [link](python/llm/example/GPU/HuggingFace/LLM/llama3) | +| 模型 | CPU 示例 | GPU 示例 | NPU 示例 | +|----------- |------------------------------------------|-------------------------------------------|-------------------------------------------| +| LLaMA | [link1](python/llm/example/CPU/Native-Models), [link2](python/llm/example/CPU/HF-Transformers-AutoModels/Model/vicuna) |[link](python/llm/example/GPU/HuggingFace/LLM/vicuna)| +| LLaMA 2 | [link1](python/llm/example/CPU/Native-Models), [link2](python/llm/example/CPU/HF-Transformers-AutoModels/Model/llama2) | [link](python/llm/example/GPU/HuggingFace/LLM/llama2) | [Python link](python/llm/example/NPU/HF-Transformers-AutoModels/LLM), [C++ link](python/llm/example/NPU/HF-Transformers-AutoModels/LLM/CPP_Examples) | +| LLaMA 3 | [link](python/llm/example/CPU/HF-Transformers-AutoModels/Model/llama3) | [link](python/llm/example/GPU/HuggingFace/LLM/llama3) | [Python link](python/llm/example/NPU/HF-Transformers-AutoModels/LLM), [C++ link](python/llm/example/NPU/HF-Transformers-AutoModels/LLM/CPP_Examples) | | LLaMA 3.1 | [link](python/llm/example/CPU/HF-Transformers-AutoModels/Model/llama3.1) | [link](python/llm/example/GPU/HuggingFace/LLM/llama3.1) | -| LLaMA 3.2 | | [link](python/llm/example/GPU/HuggingFace/LLM/llama3.2) | +| LLaMA 3.2 | | [link](python/llm/example/GPU/HuggingFace/LLM/llama3.2) | [Python link](python/llm/example/NPU/HF-Transformers-AutoModels/LLM), [C++ link](python/llm/example/NPU/HF-Transformers-AutoModels/LLM/CPP_Examples) | | LLaMA 3.2-Vision | | [link](python/llm/example/GPU/PyTorch-Models/Model/llama3.2-vision/) | | ChatGLM | [link](python/llm/example/CPU/HF-Transformers-AutoModels/Model/chatglm) | | | ChatGLM2 | [link](python/llm/example/CPU/HF-Transformers-AutoModels/Model/chatglm2) | [link](python/llm/example/GPU/HuggingFace/LLM/chatglm2) | @@ -276,15 +277,16 @@ See the demo of running [*Text-Generation-WebUI*](https://ipex-llm.readthedocs.i | Phoenix | [link1](python/llm/example/CPU/Native-Models), [link2](python/llm/example/CPU/HF-Transformers-AutoModels/Model/phoenix) | | | StarCoder | [link1](python/llm/example/CPU/Native-Models), [link2](python/llm/example/CPU/HF-Transformers-AutoModels/Model/starcoder) | [link](python/llm/example/GPU/HuggingFace/LLM/starcoder) | | Baichuan | [link](python/llm/example/CPU/HF-Transformers-AutoModels/Model/baichuan) | [link](python/llm/example/GPU/HuggingFace/LLM/baichuan) | -| Baichuan2 | [link](python/llm/example/CPU/HF-Transformers-AutoModels/Model/baichuan2) | [link](python/llm/example/GPU/HuggingFace/LLM/baichuan2) | +| Baichuan2 | [link](python/llm/example/CPU/HF-Transformers-AutoModels/Model/baichuan2) | [link](python/llm/example/GPU/HuggingFace/LLM/baichuan2) | [Python link](python/llm/example/NPU/HF-Transformers-AutoModels/LLM) | | InternLM | [link](python/llm/example/CPU/HF-Transformers-AutoModels/Model/internlm) | [link](python/llm/example/GPU/HuggingFace/LLM/internlm) | | InternVL2 | | [link](python/llm/example/GPU/HuggingFace/Multimodal/internvl2) | | Qwen | [link](python/llm/example/CPU/HF-Transformers-AutoModels/Model/qwen) | [link](python/llm/example/GPU/HuggingFace/LLM/qwen) | | Qwen1.5 | [link](python/llm/example/CPU/HF-Transformers-AutoModels/Model/qwen1.5) | [link](python/llm/example/GPU/HuggingFace/LLM/qwen1.5) | -| Qwen2 | [link](python/llm/example/CPU/HF-Transformers-AutoModels/Model/qwen2) | [link](python/llm/example/GPU/HuggingFace/LLM/qwen2) | -| Qwen2.5 | | [link](python/llm/example/GPU/HuggingFace/LLM/qwen2.5) | +| Qwen2 | [link](python/llm/example/CPU/HF-Transformers-AutoModels/Model/qwen2) | [link](python/llm/example/GPU/HuggingFace/LLM/qwen2) | [Python link](python/llm/example/NPU/HF-Transformers-AutoModels/LLM), [C++ link](python/llm/example/NPU/HF-Transformers-AutoModels/LLM/CPP_Examples) | +| Qwen2.5 | | [link](python/llm/example/GPU/HuggingFace/LLM/qwen2.5) | [Python link](python/llm/example/NPU/HF-Transformers-AutoModels/LLM), [C++ link](python/llm/example/NPU/HF-Transformers-AutoModels/LLM/CPP_Examples) | | Qwen-VL | [link](python/llm/example/CPU/HF-Transformers-AutoModels/Model/qwen-vl) | [link](python/llm/example/GPU/HuggingFace/Multimodal/qwen-vl) | | Qwen2-VL || [link](python/llm/example/GPU/PyTorch-Models/Model/qwen2-vl) | +| Qwen2-Audio | | [link](python/llm/example/GPU/HuggingFace/Multimodal/qwen2-audio) | | Aquila | [link](python/llm/example/CPU/HF-Transformers-AutoModels/Model/aquila) | [link](python/llm/example/GPU/HuggingFace/LLM/aquila) | | Aquila2 | [link](python/llm/example/CPU/HF-Transformers-AutoModels/Model/aquila2) | [link](python/llm/example/GPU/HuggingFace/LLM/aquila2) | | MOSS | [link](python/llm/example/CPU/HF-Transformers-AutoModels/Model/moss) | | @@ -323,13 +325,15 @@ See the demo of running [*Text-Generation-WebUI*](https://ipex-llm.readthedocs.i | CodeGemma | [link](python/llm/example/CPU/HF-Transformers-AutoModels/Model/codegemma) | [link](python/llm/example/GPU/HuggingFace/LLM/codegemma) | | Command-R/cohere | [link](python/llm/example/CPU/HF-Transformers-AutoModels/Model/cohere) | [link](python/llm/example/GPU/HuggingFace/LLM/cohere) | | CodeGeeX2 | [link](python/llm/example/CPU/HF-Transformers-AutoModels/Model/codegeex2) | [link](python/llm/example/GPU/HuggingFace/LLM/codegeex2) | -| MiniCPM | [link](python/llm/example/CPU/HF-Transformers-AutoModels/Model/minicpm) | [link](python/llm/example/GPU/HuggingFace/LLM/minicpm) | +| MiniCPM | [link](python/llm/example/CPU/HF-Transformers-AutoModels/Model/minicpm) | [link](python/llm/example/GPU/HuggingFace/LLM/minicpm) | [Python link](python/llm/example/NPU/HF-Transformers-AutoModels/LLM), [C++ link](python/llm/example/NPU/HF-Transformers-AutoModels/LLM/CPP_Examples) | | MiniCPM3 | | [link](python/llm/example/GPU/HuggingFace/LLM/minicpm3) | | MiniCPM-V | | [link](python/llm/example/GPU/HuggingFace/Multimodal/MiniCPM-V) | -| MiniCPM-V-2 | | [link](python/llm/example/GPU/HuggingFace/Multimodal/MiniCPM-V-2) | -| MiniCPM-Llama3-V-2_5 | | [link](python/llm/example/GPU/HuggingFace/Multimodal/MiniCPM-Llama3-V-2_5) | -| MiniCPM-V-2_6 | | [link](python/llm/example/GPU/HuggingFace/Multimodal/MiniCPM-V-2_6) | +| MiniCPM-V-2 | [link](python/llm/example/CPU/HF-Transformers-AutoModels/Model/minicpm-v-2) | [link](python/llm/example/GPU/HuggingFace/Multimodal/MiniCPM-V-2) | +| MiniCPM-Llama3-V-2_5 | | [link](python/llm/example/GPU/HuggingFace/Multimodal/MiniCPM-Llama3-V-2_5) | [Python link](python/llm/example/NPU/HF-Transformers-AutoModels/Multimodal) | +| MiniCPM-V-2_6 | [link](python/llm/example/CPU/HF-Transformers-AutoModels/Model/minicpm-v-2_6) | [link](python/llm/example/GPU/HuggingFace/Multimodal/MiniCPM-V-2_6) | [Python link](python/llm/example/NPU/HF-Transformers-AutoModels/Multimodal) | | StableDiffusion | | [link](python/llm/example/GPU/HuggingFace/Multimodal/StableDiffusion) | +| Bce-Embedding-Base-V1 | | | [Python link](python/llm/example/NPU/HF-Transformers-AutoModels/Multimodal) | +| Speech_Paraformer-Large | | | [Python link](python/llm/example/NPU/HF-Transformers-AutoModels/Multimodal) | ## 官方支持 - 如果遇到问题,或者请求新功能支持,请提交 [Github Issue](https://github.com/intel-analytics/ipex-llm/issues) 告诉我们 diff --git a/docs/mddocs/Quickstart/README.md b/docs/mddocs/Quickstart/README.md index 49a839c2d00..c214e3e15a2 100644 --- a/docs/mddocs/Quickstart/README.md +++ b/docs/mddocs/Quickstart/README.md @@ -13,6 +13,7 @@ This section includes efficient guide to show you how to: ## Inference +- [Run IPEX-LLM on Intel NPU](./npu_quickstart.md) - [Run Performance Benchmarking with IPEX-LLM](./benchmark_quickstart.md) - [Run Local RAG using Langchain-Chatchat on Intel GPU](./chatchat_quickstart.md) - [Run Text Generation WebUI on Intel GPU](./webui_quickstart.md) diff --git a/docs/mddocs/Quickstart/npu_quickstart.md b/docs/mddocs/Quickstart/npu_quickstart.md new file mode 100644 index 00000000000..0d220ee18bc --- /dev/null +++ b/docs/mddocs/Quickstart/npu_quickstart.md @@ -0,0 +1,155 @@ +# Run IPEX-LLM on Intel NPU + +This guide demonstrates: + +- How to install IPEX-LLM for Intel NPU on Intel Core™ Ultra Processers (Series 2) +- Python and C++ APIs for running IPEX-LLM on Intel NPU + +> [!IMPORTANT] +> IPEX-LLM currently only supports Windows on Intel NPU. + +## Table of Contents + +- [Install Prerequisites](#install-prerequisites) +- [Install `ipex-llm` with NPU Support](#install-ipex-llm-with-npu-support) +- [Runtime Configurations](#runtime-configurations) +- [Python API](#python-api) +- [C++ API](#c-api) +- [Accuracy Tuning](#accuracy-tuning) + +## Install Prerequisites + +> [!NOTE] +> IPEX-LLM NPU support on Windows has been verified on Intel Core™ Ultra Processers (Series 2) with processor number 2xxV (code name Lunar Lake). + +### Update NPU Driver + +> [!IMPORTANT] +> If you have NPU driver version lower than `32.0.100.3104`, it is highly recommended to update your NPU driver to the latest. + +To update driver for Intel NPU: + +1. Download the latest NPU driver + + - Visit the [official Intel NPU driver page for Windows](https://www.intel.com/content/www/us/en/download/794734/intel-npu-driver-windows.html) and download the latest driver zip file. + - Extract the driver zip file + +2. Install the driver + + - Open **Device Manager** and locate **Neural processors** -> **Intel(R) AI Boost** in the device list + - Right-click on **Intel(R) AI Boost** and select **Update driver** + - Choose **Browse my computer for drivers**, navigate to the folder where you extracted the driver zip file, and select **Next** + - Wait for the installation finished + +A system reboot is necessary to apply the changes after the installation is complete. + +### (Optional) Install Visual Studio 2022 + +> [!NOTE] +> To use IPEX-LLM **C++ API** on Intel NPU, you are required to install Visual Studio 2022 on your system. If you plan to use the **Python API**, skip this step. + +Install [Visual Studio 2022](https://visualstudio.microsoft.com/downloads/) Community Edition and select "Desktop development with C++" workload: + +
+ +
+ +### Setup Python Environment + +Visit [Miniforge installation page](https://conda-forge.org/download/), download the **Miniforge installer for Windows**, and follow the instructions to complete the installation. + +
+ +
+ +After installation, open the **Miniforge Prompt**, create a new python environment `llm-npu`: +```cmd +conda create -n llm-npu python=3.11 +``` +Activate the newly created environment `llm-npu`: +```cmd +conda activate llm-npu +``` + +> [!TIP] +> `ipex-llm` for NPU supports Python 3.10 and 3.11. + +## Install `ipex-llm` with NPU Support + +With the `llm-npu` environment active, use `pip` to install `ipex-llm` for NPU: + +```cmd +conda activate llm-npu + +pip install --pre --upgrade ipex-llm[npu] +``` + +## Runtime Configurations + +For `ipex-llm` NPU support, set the following environment variable with active `llm-npu` environment: + +```cmd +set BIGDL_USE_NPU=1 +``` + +## Python API + +IPEX-LLM offers Hugging Face `transformers`-like Python API, enabling seamless running of Hugging Face transformers models on Intel NPU. + +Refer to the following table for examples of verified models: +[](../../../python/llm/) +| Model | Model link | Example link | +|:--|:--|:--| +| LLaMA 2 | [meta-llama/Llama-2-7b-chat-hf](https://huggingface.co/meta-llama/Llama-2-7b-chat-hf) | [link](../../../python/llm/example/NPU/HF-Transformers-AutoModels/LLM#4-run-optimized-models-experimental) | +| LLaMA 3 | [meta-llama/Meta-Llama-3-8B-Instruct](https://huggingface.co/meta-llama/Meta-Llama-3-8B-Instruct) | [link](../../../python/llm/example/NPU/HF-Transformers-AutoModels/LLM#4-run-optimized-models-experimental) | +| LLaMA 3.2 | [meta-llama/Llama-3.2-1B-Instruct](https://huggingface.co/meta-llama/Llama-3.2-1B-Instruct), [meta-llama/Llama-3.2-3B-Instruct](https://huggingface.co/meta-llama/Llama-3.2-3B-Instruct) | [link](../../../python/llm/example/NPU/HF-Transformers-AutoModels/LLM#4-run-optimized-models-experimental) | +| Qwen 2 | [Qwen/Qwen2-1.5B-Instruct](https://huggingface.co/Qwen/Qwen2-1.5B-Instruct), [Qwen/Qwen2-7B-Instruct](https://huggingface.co/Qwen/Qwen2-7B-Instruct) | [link](../../../python/llm/example/NPU/HF-Transformers-AutoModels/LLM#4-run-optimized-models-experimental) | +| Qwen 2.5 | [Qwen/Qwen2.5-3B-Instruct](https://huggingface.co/Qwen/Qwen2.5-3B-Instruct), [Qwen/Qwen2.5-7B-Instruct](https://huggingface.co/Qwen/Qwen2.5-7B-Instruct) | [link](../../../python/llm/example/NPU/HF-Transformers-AutoModels/LLM#4-run-optimized-models-experimental) | +| MiniCPM | [openbmb/MiniCPM-1B-sft-bf16](https://huggingface.co/openbmb/MiniCPM-1B-sft-bf16), [openbmb/MiniCPM-2B-sft-bf16](https://huggingface.co/openbmb/MiniCPM-2B-sft-bf16) | [link](../../../python/llm/example/NPU/HF-Transformers-AutoModels/LLM#4-run-optimized-models-experimental) | +| Baichuan 2 | [baichuan-inc/Baichuan2-7B-Chat](https://huggingface.co/baichuan-inc/Baichuan2-7B-Chat) | [link](../../../python/llm/example/NPU/HF-Transformers-AutoModels/LLM#4-run-optimized-models-experimental) | +| MiniCPM-Llama3-V-2_5 | [openbmb/MiniCPM-Llama3-V-2_5](https://huggingface.co/openbmb/MiniCPM-Llama3-V-2_5) | [link](../../../python/llm/example/NPU/HF-Transformers-AutoModels/Multimodal#4-run-optimized-models-experimental) | +| MiniCPM-V-2_6 | [openbmb/MiniCPM-V-2_6](https://huggingface.co/openbmb/MiniCPM-V-2_6) | [link](../../../python/llm/example/NPU/HF-Transformers-AutoModels/Multimodal#4-run-optimized-models-experimental) | +| Bce-Embedding-Base-V1 | [maidalun1020/bce-embedding-base_v1](https://huggingface.co/maidalun1020/bce-embedding-base_v1) | [link](../../../python/llm/example/NPU/HF-Transformers-AutoModels/Multimodal#4-run-optimized-models-experimental) | +| Speech_Paraformer-Large | [iic/speech_paraformer-large-vad-punc_asr_nat-zh-cn-16k-common-vocab8404-pytorch](https://www.modelscope.cn/models/iic/speech_paraformer-large-vad-punc_asr_nat-zh-cn-16k-common-vocab8404-pytorch) | [link](../../../python/llm/example/NPU/HF-Transformers-AutoModels/Multimodal#4-run-optimized-models-experimental) | + + +> [!TIP] +> You could refer to [here](../../../python/llm/example/NPU/HF-Transformers-AutoModels) for full IPEX-LLM examples on Intel NPU. + +## C++ API + +IPEX-LLM also provides C++ API for running Hugging Face `transformers` models. + +Refer to the following table for examples of verified models: + +| Model | Model link | Example link | +|:--|:--|:--| +| LLaMA 2 | [meta-llama/Llama-2-7b-chat-hf](https://huggingface.co/meta-llama/Llama-2-7b-chat-hf) | [link](../../../python/llm/example/NPU/HF-Transformers-AutoModels/LLM/CPP_Examples) | +| LLaMA 3 | [meta-llama/Meta-Llama-3-8B-Instruct](https://huggingface.co/meta-llama/Meta-Llama-3-8B-Instruct) | [link](../../../python/llm/example/NPU/HF-Transformers-AutoModels/LLM/CPP_Examples) | +| LLaMA 3.2 | [meta-llama/Llama-3.2-1B-Instruct](https://huggingface.co/meta-llama/Llama-3.2-1B-Instruct), [meta-llama/Llama-3.2-3B-Instruct](https://huggingface.co/meta-llama/Llama-3.2-3B-Instruct) | [link](../../../python/llm/example/NPU/HF-Transformers-AutoModels/LLM/CPP_Examples) | +| Qwen 2 | [Qwen/Qwen2-1.5B-Instruct](https://huggingface.co/Qwen/Qwen2-1.5B-Instruct), [Qwen/Qwen2-7B-Instruct](https://huggingface.co/Qwen/Qwen2-7B-Instruct) | [link](../../../python/llm/example/NPU/HF-Transformers-AutoModels/LLM/CPP_Examples) | +| Qwen 2.5 | [Qwen/Qwen2.5-3B-Instruct](https://huggingface.co/Qwen/Qwen2.5-3B-Instruct), [Qwen/Qwen2.5-7B-Instruct](https://huggingface.co/Qwen/Qwen2.5-7B-Instruct) | [link](../../../python/llm/example/NPU/HF-Transformers-AutoModels/LLM/CPP_Examples) | +| MiniCPM | [openbmb/MiniCPM-1B-sft-bf16](https://huggingface.co/openbmb/MiniCPM-1B-sft-bf16), [openbmb/MiniCPM-2B-sft-bf16](https://huggingface.co/openbmb/MiniCPM-2B-sft-bf16) | [link](../../../python/llm/example/NPU/HF-Transformers-AutoModels/LLM/CPP_Examples) | + +> [!TIP] +> You could refer to [here](../../../python/llm/example/NPU/HF-Transformers-AutoModels) for full IPEX-LLM examples on Intel NPU. + +## Accuracy Tuning + +IPEX-LLM provides several optimization methods for enhancing the accuracy of model outputs on Intel NPU. You can select and combine these techniques to achieve better outputs based on your specific use case. + +### 1. `IPEX_LLM_NPU_QUANTIZATION_OPT` Env + +You could set environment variable `IPEX_LLM_NPU_QUANTIZATION_OPT=1` before loading & optimizing the model with `from_pretrained` function from `ipex_llm.transformers.npu_model` Auto Model class to further enhance model accuracy of low-bit models. + +### 2. Mixed Precision + +When loading & optimizing the model with `from_pretrained` function of `ipex_llm.transformers.npu_model` Auto Model class, you could try to set parameter `mixed_precision=True` to enable mixed precision optimization when encountering output problems. + +### 3. Group Size + +IPEX-LLM low-bit optimizations support both channel-wise and group-wise quantization on Intel NPU. When loading & optimizing the model with `from_pretrained` function of Auto Model class from `ipex_llm.transformers.npu_model`, parameter `quantization_group_size` will control whether to use channel-wise or group-wise quantization. + +If setting `quantization_group_size=0`, IPEX-LLM will use channel-wise quantization. If setting `quantization_group_size=128`, IPEX-LLM will use group-wise quantization with group size 128. + +You could try to use group-wise quantization for better outputs. \ No newline at end of file diff --git a/docs/mddocs/README.md b/docs/mddocs/README.md index d326bed94f4..2eac0ca9148 100644 --- a/docs/mddocs/README.md +++ b/docs/mddocs/README.md @@ -18,6 +18,7 @@ - [`bigdl-llm` Migration Guide](./Quickstart/bigdl_llm_migration.md) - [Install IPEX-LLM on Linux with Intel GPU](./Quickstart/install_linux_gpu.md) - [Install IPEX-LLM on Windows with Intel GPU](./Quickstart/install_windows_gpu.md) + - [Run IPEX-LLM on Intel NPU](./Quickstart/npu_quickstart.md) - [Run Local RAG using Langchain-Chatchat on Intel CPU and GPU](./Quickstart/chatchat_quickstart.md) - [Run Text Generation WebUI on Intel GPU](./Quickstart/webui_quickstart.md) - [Run Open WebUI with Intel GPU](./Quickstart/open_webui_with_ollama_quickstart.md) diff --git a/python/llm/example/NPU/HF-Transformers-AutoModels/LLM/README.md b/python/llm/example/NPU/HF-Transformers-AutoModels/LLM/README.md index 56ff3963f1b..d40b89a3a83 100644 --- a/python/llm/example/NPU/HF-Transformers-AutoModels/LLM/README.md +++ b/python/llm/example/NPU/HF-Transformers-AutoModels/LLM/README.md @@ -16,7 +16,7 @@ In this directory, you will find examples on how to directly run HuggingFace `tr | MiniCPM | [openbmb/MiniCPM-1B-sft-bf16](https://huggingface.co/openbmb/MiniCPM-1B-sft-bf16), [openbmb/MiniCPM-2B-sft-bf16](https://huggingface.co/openbmb/MiniCPM-2B-sft-bf16) | | Phi-3 | [microsoft/Phi-3-mini-4k-instruct](https://huggingface.co/microsoft/Phi-3-mini-4k-instruct) | | Stablelm | [stabilityai/stablelm-zephyr-3b](https://huggingface.co/stabilityai/stablelm-zephyr-3b) | -| Baichuan2 | [baichuan-inc/Baichuan2-7B-Chat](https://huggingface.co/baichuan-inc/Baichuan-7B-Chat) | +| Baichuan2 | [baichuan-inc/Baichuan2-7B-Chat](https://huggingface.co/baichuan-inc/Baichuan2-7B-Chat) | | Deepseek | [deepseek-ai/deepseek-coder-6.7b-instruct](https://huggingface.co/deepseek-ai/deepseek-coder-6.7b-instruct) | | Mistral | [mistralai/Mistral-7B-Instruct-v0.1](https://huggingface.co/mistralai/Mistral-7B-Instruct-v0.1) | diff --git a/python/llm/example/NPU/HF-Transformers-AutoModels/Multimodal/README.md b/python/llm/example/NPU/HF-Transformers-AutoModels/Multimodal/README.md index 53f47df7946..401c87583e8 100644 --- a/python/llm/example/NPU/HF-Transformers-AutoModels/Multimodal/README.md +++ b/python/llm/example/NPU/HF-Transformers-AutoModels/Multimodal/README.md @@ -98,6 +98,7 @@ The examples below show how to run the **_optimized HuggingFace & FunASR model i - [MiniCPM-Llama3-V-2_5](./minicpm-llama3-v2.5.py) - [MiniCPM-V-2_6](./minicpm_v_2_6.py) - [Speech_Paraformer-Large](./speech_paraformer-large.py) +- [Bce-Embedding-Base-V1 ](./bce-embedding.py) ### 4.1 Run MiniCPM-Llama3-V-2_5 & MiniCPM-V-2_6 ```bash diff --git a/python/llm/example/NPU/HF-Transformers-AutoModels/README.md b/python/llm/example/NPU/HF-Transformers-AutoModels/README.md index 2d2a7477729..347b1704bf3 100644 --- a/python/llm/example/NPU/HF-Transformers-AutoModels/README.md +++ b/python/llm/example/NPU/HF-Transformers-AutoModels/README.md @@ -19,7 +19,7 @@ This folder contains examples of running IPEX-LLM on Intel NPU: | MiniCPM | [openbmb/MiniCPM-2B-sft-bf16](https://huggingface.co/openbmb/MiniCPM-2B-sft-bf16) | | Phi-3 | [microsoft/Phi-3-mini-4k-instruct](https://huggingface.co/microsoft/Phi-3-mini-4k-instruct) | | Stablelm | [stabilityai/stablelm-zephyr-3b](https://huggingface.co/stabilityai/stablelm-zephyr-3b) | -| Baichuan2 | [baichuan-inc/Baichuan2-7B-Chat](https://huggingface.co/baichuan-inc/Baichuan-7B-Chat) | +| Baichuan2 | [baichuan-inc/Baichuan2-7B-Chat](https://huggingface.co/baichuan-inc/Baichuan2-7B-Chat) | | Deepseek | [deepseek-ai/deepseek-coder-6.7b-instruct](https://huggingface.co/deepseek-ai/deepseek-coder-6.7b-instruct) | | Mistral | [mistralai/Mistral-7B-Instruct-v0.1](https://huggingface.co/mistralai/Mistral-7B-Instruct-v0.1) | | Phi-3-Vision | [microsoft/Phi-3-vision-128k-instruct](https://huggingface.co/microsoft/Phi-3-vision-128k-instruct) |