From 14b1e6b699d0be165640911ca1e234fb3750654a Mon Sep 17 00:00:00 2001 From: Ruonan Wang Date: Wed, 12 Jun 2024 20:43:08 +0800 Subject: [PATCH] Fix gguf_q4k (#11293) * udpate embedding parameter * update benchmark --- python/llm/dev/benchmark/all-in-one/run.py | 48 +++++++++++-------- .../src/ipex_llm/transformers/embedding.py | 4 +- 2 files changed, 32 insertions(+), 20 deletions(-) diff --git a/python/llm/dev/benchmark/all-in-one/run.py b/python/llm/dev/benchmark/all-in-one/run.py index 6fe875a1bd2..1a1d9490f9e 100644 --- a/python/llm/dev/benchmark/all-in-one/run.py +++ b/python/llm/dev/benchmark/all-in-one/run.py @@ -449,40 +449,50 @@ def run_transformer_int4_gpu(repo_id, model_path = get_model_path(repo_id, local_model_hub) # Load model in 4 bit, # which convert the relevant layers in the model into INT4 format + if fp16: + torch_dtype = torch.float16 + else: + torch_dtype = 'auto' st = time.perf_counter() origin_repo_id = repo_id.replace("-4bit", "") if origin_repo_id in CHATGLM_IDS: if "4bit" in repo_id: model = AutoModel.load_low_bit(model_path, optimize_model=True, - trust_remote_code=True, use_cache=True, cpu_embedding=cpu_embedding).eval() + trust_remote_code=True, use_cache=True, + cpu_embedding=cpu_embedding, + torch_dtype=torch_dtype).eval() else: model = AutoModel.from_pretrained(model_path, load_in_low_bit=low_bit, optimize_model=True, - trust_remote_code=True, use_cache=True).eval() + trust_remote_code=True, use_cache=True, + torch_dtype=torch_dtype).eval() tokenizer = AutoTokenizer.from_pretrained(model_path, trust_remote_code=True, cpu_embedding=cpu_embedding) elif origin_repo_id in LLAMA_IDS: model = AutoModelForCausalLM.from_pretrained(model_path, load_in_low_bit=low_bit, trust_remote_code=True, - use_cache=True, cpu_embedding=cpu_embedding).eval() + use_cache=True, cpu_embedding=cpu_embedding, + torch_dtype=torch_dtype).eval() tokenizer = LlamaTokenizer.from_pretrained(model_path, trust_remote_code=True) else: if "4bit" in repo_id: model = AutoModelForCausalLM.load_low_bit(model_path, optimize_model=True, - trust_remote_code=True, use_cache=True, cpu_embedding=cpu_embedding).eval() + trust_remote_code=True, use_cache=True, + cpu_embedding=cpu_embedding, + torch_dtype=torch_dtype).eval() else: if 'starcoder' in repo_id: # Load starcoder-15.5b model in bf16 format to avoid CPU OOM. model = AutoModelForCausalLM.from_pretrained(model_path, optimize_model=True, load_in_low_bit=low_bit, - trust_remote_code=True, use_cache=True, cpu_embedding=cpu_embedding, torch_dtype=torch.bfloat16).eval() + trust_remote_code=True, use_cache=True, cpu_embedding=cpu_embedding, + torch_dtype=torch.bfloat16 if not fp16 else torch.float16).eval() # Convert the low-bit model back to fp32 for performance considerations. - model = model.float() + if not fp16: + model = model.float() else: model = AutoModelForCausalLM.from_pretrained(model_path, optimize_model=True, load_in_low_bit=low_bit, - trust_remote_code=True, use_cache=True, cpu_embedding=cpu_embedding).eval() + trust_remote_code=True, use_cache=True, + cpu_embedding=cpu_embedding, + torch_dtype=torch_dtype).eval() tokenizer = AutoTokenizer.from_pretrained(model_path, trust_remote_code=True) - if fp16: - model = model.half() - print("Convert model to half precision") - model = model.to('xpu') end = time.perf_counter() @@ -984,30 +994,30 @@ def run_transformer_int4_fp16_gpu_win(repo_id, st = time.perf_counter() if repo_id in CHATGLM_IDS: model = AutoModel.from_pretrained(model_path, load_in_low_bit=low_bit, optimize_model=True, - trust_remote_code=True, use_cache=True, cpu_embedding=cpu_embedding).eval() + trust_remote_code=True, use_cache=True, cpu_embedding=cpu_embedding, + torch_dtype=torch.float16).eval() tokenizer = AutoTokenizer.from_pretrained(model_path, trust_remote_code=True) - model = model.half() model = model.to('xpu') elif repo_id in LLAMA_IDS: model = AutoModelForCausalLM.from_pretrained(model_path, load_in_low_bit=low_bit, optimize_model=True, - trust_remote_code=True, use_cache=True, cpu_embedding=cpu_embedding).eval() + trust_remote_code=True, use_cache=True, cpu_embedding=cpu_embedding, + torch_dtype=torch.float16).eval() tokenizer = LlamaTokenizer.from_pretrained(model_path, trust_remote_code=True) - model = model.half() model = model.to('xpu') elif repo_id in LLAVA_IDS: llava_repo_dir = os.environ.get('LLAVA_REPO_DIR') sys.path.append(rf"{llava_repo_dir}") from llava.model.language_model.llava_llama import LlavaLlamaForCausalLM model = AutoModelForCausalLM.from_pretrained(model_path, load_in_low_bit=low_bit, optimize_model=True, - trust_remote_code=True, use_cache=True, cpu_embedding=cpu_embedding).eval() + trust_remote_code=True, use_cache=True, cpu_embedding=cpu_embedding, + torch_dtype=torch.float16).eval() tokenizer = AutoTokenizer.from_pretrained(model_path, trust_remote_code=True) - model = model.half() model = model.to('xpu') else: model = AutoModelForCausalLM.from_pretrained(model_path, optimize_model=True, load_in_low_bit=low_bit, - trust_remote_code=True, use_cache=True, cpu_embedding=cpu_embedding).eval() + trust_remote_code=True, use_cache=True, cpu_embedding=cpu_embedding, + torch_dtype=torch.float16).eval() tokenizer = AutoTokenizer.from_pretrained(model_path, trust_remote_code=True) - model = model.half() model = model.to('xpu') end = time.perf_counter() load_time = end - st diff --git a/python/llm/src/ipex_llm/transformers/embedding.py b/python/llm/src/ipex_llm/transformers/embedding.py index 1046c9e2a30..0bc1553db27 100644 --- a/python/llm/src/ipex_llm/transformers/embedding.py +++ b/python/llm/src/ipex_llm/transformers/embedding.py @@ -97,6 +97,7 @@ def __init__(self, requires_grad=False, quantized=False, _shape=None, qtype=qtype) self.embedding_dim = embedding_dim + self.num_embeddings = num_embeddings self.torch_dtype = torch_dtype def forward(self, x: Tensor): @@ -110,5 +111,6 @@ def forward(self, x: Tensor): "Please `pip install bigdl_core_xe` first.") result = xe_linear.dequantize_rows(x.contiguous(), self.weight.data, - self.weight.qtype, self.embedding_dim) + self.weight.qtype, self.embedding_dim, + self.num_embeddings) return result.to(self.torch_dtype)