In this directory, you will find examples on how you could apply IPEX-LLM INT4 or INT8 optimizations on Large Multimodal Models on Intel NPUs. See the table blow for verified models.
Model | Model Link |
---|---|
Phi-3-Vision | microsoft/Phi-3-vision-128k-instruct |
MiniCPM-Llama3-V-2_5 | openbmb/MiniCPM-Llama3-V-2_5 |
MiniCPM-V-2_6 | openbmb/MiniCPM-V-2_6 |
Bce-Embedding-Base-V1 | maidalun1020/bce-embedding-base_v1 |
Speech_Paraformer-Large | iic/speech_paraformer-large-vad-punc_asr_nat-zh-cn-16k-common-vocab8404-pytorch |
To run these examples with IPEX-LLM on Intel NPUs, make sure to install the newest driver version of Intel NPU. Go to https://www.intel.com/content/www/us/en/download/794734/intel-npu-driver-windows.html to download and unzip the driver. Then go to Device Manager, find Neural Processors -> Intel(R) AI Boost. Right click and select Update Driver -> Browse my computer for drivers. And then manually select the unzipped driver folder to install.
In the example generate.py, we show a basic use case for a phi-3-vision model to predict the next N tokens using generate()
API, with IPEX-LLM INT4 optimizations on Intel NPUs.
We suggest using conda to manage environment:
conda create -n llm python=3.10 libuv
conda activate llm
# install ipex-llm with 'npu' option
pip install --pre --upgrade ipex-llm[npu]
pip install torchvision
# [optional] for MiniCPM-V-2_6
pip install timm torch==2.1.2 torchvision==0.16.2
# [optional] for Bce-Embedding-Base-V1
pip install BCEmbedding==0.1.5 transformers==4.40.0
# [optional] for Speech_Paraformer-Large
pip install funasr==1.1.14
pip install modelscope==1.20.1 torch==2.1.2 torchaudio==2.1.2
For optimal performance, it is recommended to set several environment variables. Please check out the suggestions based on your device.
Note
For optimal performance, we recommend running code in conhost
rather than Windows Terminal:
- Press Win+R and input
conhost
, then press Enter to launchconhost
. - Run following command to use conda in
conhost
. Replace<your conda install location>
with your conda install location.
call <your conda install location>\Scripts\activate
Following envrionment variables are required:
set BIGDL_USE_NPU=1
python ./generate.py
Arguments info:
--repo-id-or-model-path REPO_ID_OR_MODEL_PATH
: argument defining the huggingface repo id for the Phi-3-vision model (e.g.microsoft/Phi-3-vision-128k-instruct
) to be downloaded, or the path to the huggingface checkpoint folder. It is default to be'microsoft/Phi-3-vision-128k-instruct'
, and more verified models please see the list in Verified Models.--lowbit-path LOWBIT_MODEL_PATH
: argument defining the path to save/load lowbit version of the model. If it is an empty string, the original pretrained model specified byREPO_ID_OR_MODEL_PATH
will be loaded. If it is an existing path, the lowbit model inLOWBIT_MODEL_PATH
will be loaded. If it is a non-existing path, the original pretrained model specified byREPO_ID_OR_MODEL_PATH
will be loaded, and the converted lowbit version will be saved intoLOWBIT_MODEL_PATH
. It is default to be''
, i.e. an empty string.--image-url-or-path IMAGE_URL_OR_PATH
: argument defining the image to be infered. It is default to be'http://farm6.staticflickr.com/5268/5602445367_3504763978_z.jpg'
.--prompt PROMPT
: argument defining the prompt to be infered (with integrated prompt format for chat). It is default to be'What is in the image?'
.--n-predict N_PREDICT
: argument defining the max number of tokens to predict. It is default to be32
.--load_in_low_bit
: argument defining theload_in_low_bit
format used. It is default to besym_int8
,sym_int4
can also be used.
Inference time: xxxx s
-------------------- Prompt --------------------
Message: [{'role': 'user', 'content': '<|image_1|>\nWhat is in the image?'}]
Image link/path: http://farm6.staticflickr.com/5268/5602445367_3504763978_z.jpg
-------------------- Output --------------------
What is in the image?
The image shows a young girl holding a white teddy bear. She is wearing a pink dress with a heart on it. The background includes a stone
The sample input image is (which is fetched from COCO dataset):
The examples below show how to run the optimized HuggingFace & FunASR model implementations on Intel NPU, including
# to run MiniCPM-Llama3-V-2_5
python minicpm-llama3-v2.5.py --save-directory <converted_model_path>
# to run MiniCPM-V-2_6
python minicpm_v_2_6.py --save-directory <converted_model_path>
Arguments info:
--repo-id-or-model-path REPO_ID_OR_MODEL_PATH
: argument defining the huggingface repo id for the model (i.e.openbmb/MiniCPM-Llama3-V-2_5
) to be downloaded, or the path to the huggingface checkpoint folder.image-url-or-path IMAGE_URL_OR_PATH
: argument defining the image to be infered. It is default to be 'http://farm6.staticflickr.com/5268/5602445367_3504763978_z.jpg'.--prompt PROMPT
: argument defining the prompt to be infered (with integrated prompt format for chat). It is default to beWhat is in the image?
.--n-predict N_PREDICT
: argument defining the max number of tokens to predict. It is default to be32
.--max-output-len MAX_OUTPUT_LEN
: Defines the maximum sequence length for both input and output tokens. It is default to be1024
.--max-prompt-len MAX_PROMPT_LEN
: Defines the maximum number of tokens that the input prompt can contain. It is default to be512
.--disable-transpose-value-cache
: Disable the optimization of transposing value cache.--save-directory SAVE_DIRECTORY
: argument defining the path to save converted model. If it is a non-existing path, the original pretrained model specified byREPO_ID_OR_MODEL_PATH
will be loaded, otherwise the lowbit model inSAVE_DIRECTORY
will be loaded.
Inference time: xx.xx s
-------------------- Input --------------------
http://farm6.staticflickr.com/5268/5602445367_3504763978_z.jpg
-------------------- Prompt --------------------
What is in this image?
-------------------- Output --------------------
The image features a young child holding and showing off a white teddy bear wearing a pink dress. The background includes some red flowers and a stone wall, suggesting an outdoor setting.
# to run Speech_Paraformer-Large
python speech_paraformer-large.py --save-directory <converted_model_path>
Arguments info:
--repo-id-or-model-path REPO_ID_OR_MODEL_PATH
: argument defining the asr repo id for the model (i.e.iic/speech_paraformer-large-vad-punc_asr_nat-zh-cn-16k-common-vocab8404-pytorch
) to be downloaded, or the path to the asr checkpoint folder.--load_in_low_bit
: argument defining theload_in_low_bit
format used. It is default to besym_int8
,sym_int4
can also be used.--save-directory SAVE_DIRECTORY
: argument defining the path to save converted model. If it is a non-existing path, the original pretrained model specified byREPO_ID_OR_MODEL_PATH
will be loaded, otherwise the lowbit model inSAVE_DIRECTORY
will be loaded.
# speech_paraformer-large-vad-punc_asr_nat-zh-cn-16k-common-vocab8404-pytorch/example/asr_example.wav
rtf_avg: 0.090: 100%|███████████████████████████████████| 1/1 [00:01<00:00, 1.18s/it]
[{'key': 'asr_example', 'text': '正 是 因 为 存 在 绝 对 正 义 所 以 我 们 接 受 现 实 的 相 对 正 义 但 是 不 要 因 为 现 实 的 相 对 正 义 我 们 就 认 为 这 个 世 界 没 有 正 义 因 为 如 果 当 你 认 为 这 个 世 界 没 有 正 义'}]
# https://isv-data.oss-cn-hangzhou.aliyuncs.com/ics/MaaS/ASR/test_audio/asr_example_zh.wav
rtf_avg: 0.232: 100%|███████████████████████████████████| 1/1 [00:01<00:00, 1.29s/it]
[{'key': 'asr_example_zh', 'text': '欢 迎 大 家 来 体 验 达 摩 院 推 出 的 语 音 识 别 模 型'}]
# to run Bce-Embedding-Base-V1
python bce-embedding.py --save-directory <converted_model_path>
Arguments info:
--repo-id-or-model-path REPO_ID_OR_MODEL_PATH
: argument defining the asr repo id for the model (i.e.maidalun1020/bce-embedding-base_v1
) to be downloaded, or the path to the asr checkpoint folder.--save-directory SAVE_DIRECTORY
: argument defining the path to save converted model. If it is a non-existing path, the original pretrained model specified byREPO_ID_OR_MODEL_PATH
will be loaded, otherwise the lowbit model inSAVE_DIRECTORY
will be loaded.
Inference time: xxx s
[[-0.00674987 -0.01700369 -0.0028928 ... -0.05296675 -0.00352772
0.00827096]
[-0.04398304 0.00023038 0.00643183 ... -0.02717186 0.00483789
0.02298774]]