forked from sj-li/MS-TCN2
-
Notifications
You must be signed in to change notification settings - Fork 0
/
eval.py
276 lines (207 loc) · 9.73 KB
/
eval.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
#!/usr/bin/python2.7
# adapted from: https://github.com/colincsl/TemporalConvolutionalNetworks/blob/master/code/metrics.py
import numpy as np
import argparse
from batch_gen import convert_file_to_list
from clearml import Task, Logger
def read_file(path):
with open(path, 'r') as f:
content = f.read()
f.close()
return content
def get_labels_start_end_time(frame_wise_labels, bg_class=["background"]):
labels = []
starts = []
ends = []
last_label = frame_wise_labels[0]
if frame_wise_labels[0] not in bg_class:
labels.append(frame_wise_labels[0])
starts.append(0)
for i in range(len(frame_wise_labels)):
if frame_wise_labels[i] != last_label:
if frame_wise_labels[i] not in bg_class:
labels.append(frame_wise_labels[i])
starts.append(i)
if last_label not in bg_class:
ends.append(i)
last_label = frame_wise_labels[i]
if last_label not in bg_class:
ends.append(i)
return labels, starts, ends
def levenstein(p, y, norm=False):
m_row = len(p)
n_col = len(y)
D = np.zeros([m_row+1, n_col+1], np.float64)
for i in range(m_row+1):
D[i, 0] = i
for i in range(n_col+1):
D[0, i] = i
for j in range(1, n_col+1):
for i in range(1, m_row+1):
if y[j-1] == p[i-1]:
D[i, j] = D[i-1, j-1]
else:
D[i, j] = min(D[i-1, j] + 1,
D[i, j-1] + 1,
D[i-1, j-1] + 1)
if norm:
score = (1 - D[-1, -1]/max(m_row, n_col)) * 100
else:
score = D[-1, -1]
return score
def edit_score(recognized, ground_truth, norm=True, bg_class=["background"]):
P, _, _ = get_labels_start_end_time(recognized, bg_class)
Y, _, _ = get_labels_start_end_time(ground_truth, bg_class)
return levenstein(P, Y, norm)
def f_score(recognized, ground_truth, overlap, bg_class=["background"]):
p_label, p_start, p_end = get_labels_start_end_time(recognized, bg_class)
y_label, y_start, y_end = get_labels_start_end_time(ground_truth, bg_class)
tp = 0
fp = 0
hits = np.zeros(len(y_label))
for j in range(len(p_label)):
intersection = np.minimum(p_end[j], y_end) - np.maximum(p_start[j], y_start)
union = np.maximum(p_end[j], y_end) - np.minimum(p_start[j], y_start)
IoU = (1.0*intersection / union)*([p_label[j] == y_label[x] for x in range(len(y_label))])
# Get the best scoring segment
idx = np.array(IoU).argmax()
if IoU[idx] >= overlap and not hits[idx]:
tp += 1
hits[idx] = 1
else:
fp += 1
fn = len(y_label) - sum(hits)
return float(tp), float(fp), float(fn)
def eval(dataset, folds, test_files, weight_type, final_eval=0):
print('#####################')
print('Starting evaluation')
evaluation_metrics = dict()
evaluation_metrics['acc'] = list()
evaluation_metrics['edit'] = list()
overlap = [.1, .25, .5]
for s in overlap:
evaluation_metrics[f"F1@{s}"] = list()
ClearMLlogger = Logger.current_logger()
for fold in folds:
print(f'Fold {fold}')
ground_truth_path = '/datashare/APAS/transcriptions_gestures/'
recog_path = f"./results/test/{dataset}fold{fold}/" + weight_type
list_of_videos = test_files[int(fold)]
tp, fp, fn = np.zeros(3), np.zeros(3), np.zeros(3)
correct = 0
total = 0
edit = 0
for vid in list_of_videos:
gt_file = ground_truth_path + vid[:-4] + ".txt"
gt_content = convert_file_to_list(gt_file)
recog_file = recog_path + vid.split('.')[0]
recog_content = read_file(recog_file).split('\n')[1].split()
for i in range(min(len(gt_content), len(recog_content))):
total += 1
if gt_content[i] == recog_content[i]:
correct += 1
edit += edit_score(recog_content, gt_content)
for s in range(len(overlap)):
tp1, fp1, fn1 = f_score(recog_content, gt_content, overlap[s])
tp[s] += tp1
fp[s] += fp1
fn[s] += fn1
acc = (100 * float(correct) / total)
edit = ((1.0 * edit) / len(list_of_videos))
print("Acc: %.4f" % (acc))
evaluation_metrics['acc'].append(acc)
ClearMLlogger.report_scalar(title="AccuracyPerFold", iteration=0, series=f"fold{fold}", value=acc)
print('Edit: %.4f' % (edit))
evaluation_metrics['edit'].append(edit)
ClearMLlogger.report_scalar(title="EditPerFold", iteration=0, series=f"fold{fold}", value=edit)
for s in range(len(overlap)):
precision = tp[s] / float(tp[s] + fp[s])
recall = tp[s] / float(tp[s] + fn[s])
f1 = 2.0 * (precision * recall) / (precision + recall)
f1 = np.nan_to_num(f1) * 100
print('F1@%0.2f: %.4f' % (overlap[s], f1))
evaluation_metrics[f'F1@{overlap[s]}'].append(f1)
ClearMLlogger.report_scalar(title=f"F1@{overlap[s]}PerFold", iteration=0, series=f"fold{fold}", value=f1)
print()
avg_acc_folds = sum(evaluation_metrics['acc']) / len(evaluation_metrics['acc'])
ClearMLlogger.report_scalar(title="AverageFolds", series="Accuracy", iteration=0, value=avg_acc_folds)
print("Average acccuracy on folds: %.4f" % (avg_acc_folds))
avg_edit_folds = sum(evaluation_metrics['edit']) / len(evaluation_metrics['edit'])
ClearMLlogger.report_scalar(title="AverageFolds", series="Edit", iteration=0, value=avg_edit_folds)
print('Average edit distance on folds: %.4f' % avg_edit_folds)
avg_f1_list = list()
for s in range(len(overlap)):
avg_f1_folds = sum(evaluation_metrics[f"F1@{overlap[s]}"]) / len(evaluation_metrics[f"F1@{overlap[s]}"])
avg_f1_list.append(avg_f1_folds)
ClearMLlogger.report_scalar(title="AverageFolds", series=f"F1@{overlap[s]}",iteration=0, value=avg_f1_folds)
print('Average F1@%0.2f on folds: %.4f' % (overlap[s], avg_f1_folds))
if final_eval:
return {"Avg. Accuracy": avg_acc_folds, "Avg. Edit Distance": avg_edit_folds}.update({"Avg. f1 " + str(ol): avg_f1 for ol, avg_f1 in zip(overlap, avg_f1_list)})
def main():
parser = argparse.ArgumentParser()
parser.add_argument('--dataset', default="valid")
parser.add_argument('--fold', default='1')
parser.add_argument('--weight_type', type=str)
args = parser.parse_args()
dataset = args.dataset
folds = args.fold.split(",")
weight_type = args.weight_type
evaluation_metrics = dict()
evaluation_metrics['acc'] = list()
evaluation_metrics['edit'] = list()
overlap = [.1, .25, .5]
for s in overlap:
evaluation_metrics[f"F1@{s}"] = list()
ClearMLlogger = Logger.current_logger()
for fold in folds:
print(f'Fold {fold}')
ground_truth_path = '/datashare/APAS/transcriptions_gestures/'
recog_path = f"./results/test/{dataset}{fold}/" + weight_type
file_list = f"/datashare/APAS/folds/{dataset} {fold}.txt"
list_of_videos = read_file(file_list).split('\n')[:-1]
tp, fp, fn = np.zeros(3), np.zeros(3), np.zeros(3)
correct = 0
total = 0
edit = 0
for vid in list_of_videos:
gt_file = ground_truth_path + vid[:-4] + ".txt"
gt_content = convert_file_to_list(gt_file)
recog_file = recog_path + vid.split('.')[0]
recog_content = read_file(recog_file).split('\n')[1].split()
for i in range(min(len(gt_content), len(recog_content))):
total += 1
if gt_content[i] == recog_content[i]:
correct += 1
edit += edit_score(recog_content, gt_content)
for s in range(len(overlap)):
tp1, fp1, fn1 = f_score(recog_content, gt_content, overlap[s])
tp[s] += tp1
fp[s] += fp1
fn[s] += fn1
acc = (100 * float(correct) / total)
edit = ((1.0 * edit) / len(list_of_videos))
print("Acc: %.4f" % (acc))
evaluation_metrics['acc'].append(acc)
ClearMLlogger.report_scalar(title="Accuracy", series=f"fold{fold}", iteration=0, value=acc)
print('Edit: %.4f' % (edit))
evaluation_metrics['edit'].append(edit)
ClearMLlogger.report_scalar(title="Edit", series=f"fold{fold}", iteration=0,value=edit)
for s in range(len(overlap)):
precision = tp[s] / float(tp[s]+fp[s])
recall = tp[s] / float(tp[s]+fn[s])
f1 = 2.0 * (precision*recall) / (precision+recall)
f1 = np.nan_to_num(f1)*100
print('F1@%0.2f: %.4f' % (overlap[s], f1))
evaluation_metrics[f'F1@{overlap[s]}'].append(f1)
ClearMLlogger.report_scalar(title=f"F1@{overlap[s]}", series=f"fold{fold}", iteration=0,value=f1)
print()
avg_acc_folds = sum(evaluation_metrics['acc'])/len(evaluation_metrics['acc'])
ClearMLlogger.report_scalar(title=f"AvgAccuracy", series=f"all_folds",iteration=0, value=avg_acc_folds)
print("Average acccuracy on folds: %.4f" % (avg_acc_folds))
avg_edit_folds = sum(evaluation_metrics['edit'])/len(evaluation_metrics['edit'])
ClearMLlogger.report_scalar(title=f"AvgEdit", series=f"all_folds",iteration=0, value=avg_edit_folds)
print('Average edit distance on folds: %.4f' % avg_edit_folds)
for s in range(len(overlap)):
avg_f1_folds = sum(evaluation_metrics[f"F1@{overlap[s]}"])/len(evaluation_metrics[f"F1@{overlap[s]}"])
ClearMLlogger.report_scalar(title=f"AvgF1@{overlap[s]}", series=f"all_folds",iteration=0, value=avg_f1_folds)
print('Average F1@%0.2f on folds: %.4f' % (overlap[s], avg_f1_folds))