-
Notifications
You must be signed in to change notification settings - Fork 672
/
Copy pathlanguage_helpers.py
143 lines (116 loc) · 4.62 KB
/
language_helpers.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
import collections
import numpy as np
import re
def tokenize_string(sample):
return tuple(sample.lower().split(' '))
class NgramLanguageModel(object):
def __init__(self, n, samples, tokenize=False):
if tokenize:
tokenized_samples = []
for sample in samples:
tokenized_samples.append(tokenize_string(sample))
samples = tokenized_samples
self._n = n
self._samples = samples
self._ngram_counts = collections.defaultdict(int)
self._total_ngrams = 0
for ngram in self.ngrams():
self._ngram_counts[ngram] += 1
self._total_ngrams += 1
def ngrams(self):
n = self._n
for sample in self._samples:
for i in xrange(len(sample)-n+1):
yield sample[i:i+n]
def unique_ngrams(self):
return set(self._ngram_counts.keys())
def log_likelihood(self, ngram):
if ngram not in self._ngram_counts:
return -np.inf
else:
return np.log(self._ngram_counts[ngram]) - np.log(self._total_ngrams)
def kl_to(self, p):
# p is another NgramLanguageModel
log_likelihood_ratios = []
for ngram in p.ngrams():
log_likelihood_ratios.append(p.log_likelihood(ngram) - self.log_likelihood(ngram))
return np.mean(log_likelihood_ratios)
def cosine_sim_with(self, p):
# p is another NgramLanguageModel
p_dot_q = 0.
p_norm = 0.
q_norm = 0.
for ngram in p.unique_ngrams():
p_i = np.exp(p.log_likelihood(ngram))
q_i = np.exp(self.log_likelihood(ngram))
p_dot_q += p_i * q_i
p_norm += p_i**2
for ngram in self.unique_ngrams():
q_i = np.exp(self.log_likelihood(ngram))
q_norm += q_i**2
return p_dot_q / (np.sqrt(p_norm) * np.sqrt(q_norm))
def precision_wrt(self, p):
# p is another NgramLanguageModel
num = 0.
denom = 0
p_ngrams = p.unique_ngrams()
for ngram in self.unique_ngrams():
if ngram in p_ngrams:
num += self._ngram_counts[ngram]
denom += self._ngram_counts[ngram]
return float(num) / denom
def recall_wrt(self, p):
return p.precision_wrt(self)
def js_with(self, p):
log_p = np.array([p.log_likelihood(ngram) for ngram in p.unique_ngrams()])
log_q = np.array([self.log_likelihood(ngram) for ngram in p.unique_ngrams()])
log_m = np.logaddexp(log_p - np.log(2), log_q - np.log(2))
kl_p_m = np.sum(np.exp(log_p) * (log_p - log_m))
log_p = np.array([p.log_likelihood(ngram) for ngram in self.unique_ngrams()])
log_q = np.array([self.log_likelihood(ngram) for ngram in self.unique_ngrams()])
log_m = np.logaddexp(log_p - np.log(2), log_q - np.log(2))
kl_q_m = np.sum(np.exp(log_q) * (log_q - log_m))
return 0.5*(kl_p_m + kl_q_m) / np.log(2)
def load_dataset(max_length, max_n_examples, tokenize=False, max_vocab_size=2048, data_dir='/home/ishaan/data/1-billion-word-language-modeling-benchmark-r13output'):
print "loading dataset..."
lines = []
finished = False
for i in xrange(99):
path = data_dir+("/training-monolingual.tokenized.shuffled/news.en-{}-of-00100".format(str(i+1).zfill(5)))
with open(path, 'r') as f:
for line in f:
line = line[:-1]
if tokenize:
line = tokenize_string(line)
else:
line = tuple(line)
if len(line) > max_length:
line = line[:max_length]
lines.append(line + ( ("`",)*(max_length-len(line)) ) )
if len(lines) == max_n_examples:
finished = True
break
if finished:
break
np.random.shuffle(lines)
import collections
counts = collections.Counter(char for line in lines for char in line)
charmap = {'unk':0}
inv_charmap = ['unk']
for char,count in counts.most_common(max_vocab_size-1):
if char not in charmap:
charmap[char] = len(inv_charmap)
inv_charmap.append(char)
filtered_lines = []
for line in lines:
filtered_line = []
for char in line:
if char in charmap:
filtered_line.append(char)
else:
filtered_line.append('unk')
filtered_lines.append(tuple(filtered_line))
for i in xrange(100):
print filtered_lines[i]
print "loaded {} lines in dataset".format(len(lines))
return filtered_lines, charmap, inv_charmap