-
Notifications
You must be signed in to change notification settings - Fork 0
/
etl.py
97 lines (68 loc) · 3.11 KB
/
etl.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
import os
import glob
import psycopg2
import pandas as pd
from sql_queries import *
def process_song_file(cur, filepath):
""" Creates the SONG and ARTIST table from a JSON file
Arguments: the directory path wehre to find the JSON file
Returns: void
"""
df = pd.read_json(filepath, lines=True)
song_data = df[['song_id', 'title', 'artist_id', 'year', 'duration']].values[0].tolist()
cur.execute(song_table_insert, song_data)
artist_nan = df.fillna(0.0)
artist_data = artist_nan[['artist_id', 'artist_name', 'artist_location', 'artist_latitude', 'artist_longitude']].values[0].tolist()
cur.execute(artist_table_insert, artist_data)
def process_log_file(cur, filepath):
""" Creates the TIME and USER table from a JSON file
It creates the SONGPLAY_DATA table
from performing a lookup query from the JSON file based on the song's title, artist's name and length of the song
Arguments: the directory path wehre to find the JSON file
Returns: void
"""
df = pd.read_json(filepath,lines=True)
df = df.filter(like='NextSong', axis=0)
t = pd.to_datetime(df['ts'], origin='unix', unit='ms')
time_data = (t.dt.time, t.dt.hour, t.dt.day, t.dt.weekofyear, t.dt.month, t.dt.year, t.dt.weekday)
column_labels = ('start_time', 'hour', 'day', 'week_of_year', 'month', 'year', 'weekday')
series = pd.Series(time_data, index=column_labels).to_dict()
time_df = pd.DataFrame(series)
for i, row in time_df.iterrows():
cur.execute(time_table_insert, list(row))
user_df = df[['userId', 'firstName', 'lastName', 'gender', 'level']]
for i, row in user_df.iterrows():
cur.execute(user_table_insert, row)
for index, row in df.iterrows():
cur.execute(song_select, (row.song, row.artist, row.length))
results = cur.fetchone()
if results:
songid, artistid = results
else:
songid, artistid = None, None
songplay_data = [index, row.ts, row.userId, row.level, songid, artistid, row.sessionId, row.location, row.userAgent]
cur.execute(songplay_table_insert, songplay_data)
def process_data(cur, conn, filepath, func):
""" Get all files matching extension from directory
"""
all_files = []
for root, dirs, files in os.walk(filepath):
files = glob.glob(os.path.join(root,'*.json'))
for f in files :
all_files.append(os.path.abspath(f))
# get total number of files found
num_files = len(all_files)
print('{} files found in {}'.format(num_files, filepath))
# iterate over files and process
for i, datafile in enumerate(all_files, 1):
func(cur, datafile)
conn.commit()
print('{}/{} files processed.'.format(i, num_files))
def main():
conn = psycopg2.connect("host=127.0.0.1 dbname=sparkifydb user=student password=student")
cur = conn.cursor()
process_data(cur, conn, filepath='data/song_data', func=process_song_file)
process_data(cur, conn, filepath='data/log_data', func=process_log_file)
conn.close()
if __name__ == "__main__":
main()