diff --git a/doc/index.rst b/doc/index.rst index 78f2f8c..d75a6b7 100644 --- a/doc/index.rst +++ b/doc/index.rst @@ -13,7 +13,7 @@ A short paper describing the library is available on arXiv http://arxiv.org/abs/ Supported Operating Systems --------------------------- -fastFM has a continous integration / testing servers (Travis) for **Linux (Ubuntu 14.04 LTS)** +fastFM has a continuous integration / testing servers (Travis) for **Linux (Ubuntu 14.04 LTS)** and **OS X Mavericks**. Other OS are not actively supported. .. toctree:: diff --git a/doc/tutorial.rst b/doc/tutorial.rst index d38762a..629eb39 100644 --- a/doc/tutorial.rst +++ b/doc/tutorial.rst @@ -12,7 +12,7 @@ Regression with ALS Solver -------------------------- We first set up a small toy dataset for a regression problem. Please -refere to [SIGIR2011] for background information on the implemented ALS solver. +refer to [SIGIR2011] for background information on the implemented ALS solver. .. testcode:: diff --git a/examples/warm_start_als.py b/examples/warm_start_als.py index e28d927..6eab47d 100644 --- a/examples/warm_start_als.py +++ b/examples/warm_start_als.py @@ -37,7 +37,7 @@ fm = als.FMRegression(n_iter=0, l2_reg_w=l2_reg_w, l2_reg_V=l2_reg_V, rank=rank, random_state=seed) - # initalize coefs + # initialize coefs fm.fit(X_train, y_train) rmse_train = [] diff --git a/examples/warm_start_mcmc.py b/examples/warm_start_mcmc.py index 37a5076..4aa3c45 100644 --- a/examples/warm_start_mcmc.py +++ b/examples/warm_start_mcmc.py @@ -48,7 +48,7 @@ """ fm = mcmc.FMRegression(n_iter=0, rank=rank, random_state=seed) - # initalize coefs + # initialize coefs fm.fit_predict(X_train, y_train, X_test) rmse_test = [] diff --git a/fastFM/bpr.py b/fastFM/bpr.py index 877c483..91317fa 100644 --- a/fastFM/bpr.py +++ b/fastFM/bpr.py @@ -38,7 +38,7 @@ class FMRecommender(FactorizationMachine): step_size : float Stepsize for the SGD solver, the solver uses a fixed step size and - might require a tunning of the number of iterations `n_iter`. + might require a tuning of the number of iterations `n_iter`. Attributes --------- diff --git a/fastFM/sgd.py b/fastFM/sgd.py index 27f9810..279641d 100644 --- a/fastFM/sgd.py +++ b/fastFM/sgd.py @@ -41,7 +41,7 @@ class FMRegression(FactorizationMachine, RegressorMixin): step_size : float Stepsize for the SGD solver, the solver uses a fixed step size and - might require a tunning of the number of iterations `n_iter`. + might require a tuning of the number of iterations `n_iter`. Attributes --------- @@ -125,7 +125,7 @@ class FMClassification(BaseFMClassifier): step_size : float Stepsize for the SGD solver, the solver uses a fixed step size and - might require a tunning of the number of iterations `n_iter`. + might require a tuning of the number of iterations `n_iter`. Attributes --------- diff --git a/fastFM/tests/test_als.py b/fastFM/tests/test_als.py index e3707a9..ab25ee0 100644 --- a/fastFM/tests/test_als.py +++ b/fastFM/tests/test_als.py @@ -140,7 +140,7 @@ def test_warm_start_path(): fm = als.FMRegression(n_iter=0, l2_reg_w=l2_reg_w, l2_reg_V=l2_reg_V, rank=rank, random_state=seed) - # initalize coefs + # initialize coefs fm.fit(X_train, y_train) rmse_train = [] diff --git a/fastFM/validation.py b/fastFM/validation.py index ebc5330..160c184 100644 --- a/fastFM/validation.py +++ b/fastFM/validation.py @@ -217,7 +217,7 @@ def check_random_state(seed): def _shape_repr(shape): - """Return a platform independent reprensentation of an array shape + """Return a platform independent representation of an array shape Under Python 2, the `long` type introduces an 'L' suffix when using the default %r format for tuples of integers (typically used to store the shape of an array).