-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathmain.py
190 lines (137 loc) · 5.89 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
import os
import time
import torch
import random
import argparse
import numpy as np
import torch.optim as optim
from torch.autograd import Variable
from utils.stats import pearson_correlation
from torch.utils.data import TensorDataset, DataLoader
from torch.utils.data.sampler import SubsetRandomSampler
from models.extractor import get_extractor
from models.regressor import Regressor
random.seed(0)
np.random.seed(0)
torch.manual_seed(0)
def str2bool(v):
"""See: https://stackoverflow.com/questions/15008758/parsing-boolean-values-with-argparse"""
if v.lower() in ('yes', 'true', 't', 'y', '1'):
return True
elif v.lower() in ('no', 'false', 'f', 'n', '0'):
return False
else:
raise argparse.ArgumentTypeError('Boolean value expected.')
def main(args):
"""
Main entry point.
"""
cuda = torch.cuda.is_available()
X, y = torch.load("./data/geno_oh.pt"), torch.load("./data/pheno.pt").float()
args.input_length = X.shape[-1]
extractor = get_extractor(args)
out = extractor(Variable(X[0:1]))
if isinstance(out, tuple):
out, _ = out
extractor.zero_grad()
model = Regressor(out.shape[-1] * out.shape[-2], 1, extractor)
model.initialize_weights()
# metric = torch.nn.MSELoss()
n = int(0.8 * X.shape[0])
permuatation = [i for i in range(X.shape[0])]
random.shuffle(permuatation)
testing = permuatation[n:]
m = int(0.8 * n)
validation = permuatation[m:n]
training = permuatation[:m]
dataloaders = {
"train": DataLoader(TensorDataset(X, y), batch_size=args.batch_size, sampler=SubsetRandomSampler(training)),
"valid": DataLoader(TensorDataset(X, y), batch_size=args.batch_size, sampler=SubsetRandomSampler(validation)),
"test": DataLoader(TensorDataset(X, y), batch_size=args.batch_size, sampler=SubsetRandomSampler(testing))
}
if cuda:
model = model.cuda()
# metric = metric.cuda()
optimizer = optim.RMSprop(model.parameters())
if args.extractor == "sae":
# Need to train the autoencoder first.
if os.path.isfile("sae.pt"):
extractor.load_state_dict(torch.load("sae.pt"))
else:
# Train from scratch.
adam = optim.Adam(extractor.parameters())
mse = torch.nn.MSELoss()
if cuda:
mse = mse.cuda()
extractor.train()
for epoch in range(args.epochs):
start = time.time()
losses = []
for batch, _ in dataloaders["train"]:
batch = Variable(batch)
if cuda:
batch = batch.cuda()
_, decoded = extractor(batch)
loss = mse(decoded, batch)
loss.backward()
adam.step()
losses.append(loss.item())
print("Epoch {}: AE Training Loss: {:0.4f}, {:0.4f}s"
.format(epoch, np.mean(losses), time.time() - start))
torch.save(extractor.state_dict(), "sae.pt")
try:
for epoch in range(args.epochs):
start_time = time.time()
train_losses = []
train_accs = []
valid_accs = []
for stage in ["train", "valid"]:
if stage == "train":
model.train()
else:
model.eval()
loader = dataloaders[stage]
for batch, target in loader:
batch, target = Variable(batch), Variable(target)
if cuda:
batch, target = batch.cuda(), target.cuda()
optimizer.zero_grad()
output = model(batch)
if stage == "train":
# Multiply the correlation by -1 since we want to maximize correlation.
loss = -1 * pearson_correlation(output.squeeze(), target.squeeze())
loss.backward()
optimizer.step()
train_losses.append(loss.item())
train_accs.append(pearson_correlation(output.squeeze(), target.squeeze()).item())
if stage == "valid":
valid_accs.append(pearson_correlation(output.squeeze(), target.squeeze()).item())
print("Epoch {}, train loss {:0.4f}, train acc {:0.4f}, valid acc {:0.4f}, {:0.4f}s"
.format(epoch, np.mean(train_losses), np.mean(train_accs),
np.mean(valid_accs), time.time() - start_time))
except KeyboardInterrupt:
print("Caught keyboard interrupt, testing model.")
model.eval()
accs = []
for batch, target in dataloaders["test"]:
if cuda:
batch, target = batch.cuda(), target.cuda()
output = model(batch)
accs.append(pearson_correlation(output.squeeze(), target.squeeze()).item())
print("*" * 40)
print("Test acc {:0.4f}".format(np.mean(accs)))
if __name__ == '__main__':
parser = argparse.ArgumentParser(description="DL Genomics")
parser.add_argument("--in_channels", type=int, default=3, help="input channels of the genotype data")
parser.add_argument("--out_channels", type=int, default=16)
parser.add_argument("--filter_length", type=int, default=26)
parser.add_argument("--pool_length", type=int, default=3)
parser.add_argument("--pool_stride", type=int, default=3)
parser.add_argument("--epochs", type=int, default=10)
parser.add_argument("--batch_size", type=int, default=32)
parser.add_argument("--lstm", type=str2bool, default='true')
parser.add_argument("--extractor", type=str, default="sae", help="options: sae, danq")
parser.add_argument("--stacks", type=int, default=1)
parser.add_argument("--intermediate_size", type=int, default=256)
args = parser.parse_args()
main(args)