-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathFermProSimFun.py
497 lines (416 loc) · 19 KB
/
FermProSimFun.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
# Fermentation Process Simulator
# noinspection PySingleQuotedDocstring
import os
from math import ceil
from random import uniform
import matplotlib.pyplot as plt
from datetime import datetime
import json
import numpy as np
import pandas as pd
import sklearn.metrics
from scipy.optimize import Bounds, minimize
class MonodModel:
'''
The 'Monod_Model' class stores all information about the bioprocess model its properties.
Attributes:
OperationMode: str, Mode of operation ('batch', 'fedbatch' or 'continuous')
Params: dict, contains model parameters for monod-like kinetics, e.g. µmax
Conditions: dict, contains starting conditions for simulated fermentation, like [Substrate]
'''
# Class attributes
__Organism = 'E. coli' # Alternatively: 'Pput'
__OperationMode = 'batch' # Alternatively: 'fedbatch', 'continuous'
__Results = dict()
def __init__(self):
# Instance attributes
self.__Params = dict(
{
'u0': 0, # Initial growth rate [h^-1]
'umax': round(uniform(0.5, 1.1), 3), # maximal growth rate [h^-1] (default 0.5 - 1.1)
'duration': 24, # Process Duration [h] as Integer
'Ks': round(uniform(7, 10), 3),
# Monod substrate affinity constant (default 7 - 10) [g/L]
'Yx': round(uniform(0.4, 0.6), 3),
# Yield coefficient for growth on glucose (default 0.4 - 0.6) [g/g]
'k1': round(uniform(0.05, 0.2), 3),
# Production rate of Product (default 0.05 - 0.2) [# h^-1]
# sources: https://bionumbers.hms.harvard.edu/bionumber.aspx?id=105318,
# https://bionumbers.hms.harvard.edu/bionumber.aspx?s=n&v=3&id=111049
})
self.__hiddenParams = dict(
{
'u0': 0, # Initial growth rate [h^-1]
'umax': round(uniform(0.5, 1.1), 3), # maximal growth rate [h^-1] (default 0.5 - 1.1)
'duration': 24, # Process Duration [h] as Integer
'Ks': round(uniform(7, 10), 3),
'Yx': round(uniform(0.4, 0.6), 3),
'k1': round(uniform(0.05, 0.2), 3),
})
self.__Conditions = dict(
{
'S0': round(uniform(19, 21), 3), # Initial substrate concentration [g/L]
'P0': 0, # Initial product concentration [g/L]
'X0': round(uniform(0.05, 0.3), 3) # Initial biomass concentration [g/L]
})
self.var_ModelingCount = 0
self.var_ExpCount = 0
self.__optimal_S = round(uniform(15, 30), 3)
self.var_Organism = self.__Organism
self.var_OperationMode = self.__OperationMode
self.var_Params = self.__Params
self.var_Conditions = self.__Conditions
self.__TimeCreated = datetime.now().strftime('%d_%m_%Y_%I_%M_%S_%f')
self.__ModelName = f'Monod_Model_{self.__TimeCreated}'
self.__Description = f'Monod_Model instance for a {self.var_Organism}-{self.var_OperationMode} microbial ' \
f'production process. \nCurrent parameters: {self.var_Params}'
def __str__(self):
'''
Use print(Monod_Model) for a quick description of the model instance.
'''
return self.__Description
# Instance methods
def get_start_params(self, hidden_params=False):
'''
This function calculates and returns the initial numeric derivatives of process parameters.
Output:
start_params: dict, contains initial process derivatives
Test for complete set of params
>>> TestModelBatch = MonodModel()
>>> len(TestModelBatch.get_start_params()) == 3
True
Test for all fedbatch params
>>> TestModel_Fedbatch = Monod_Model()
>>> TestModel_Fedbatch.var_OperationMode = 'fedbatch'
>>> len(TestModelBatch.get_start_params()) == 4
True
Test for correct sign of initial derivatives
>>> init_params = TestModelBatch.get_start_params()
>>> init_params['rX0'] >= 0 and init_params['rS0'] <= 0 and init_params['rP0'] >= 0
True
'''
if hidden_params:
u0, Yx, k1 = self.__hiddenParams['u0'], self.__hiddenParams['Yx'], self.__hiddenParams['k1']
else:
u0, Yx, k1 = self.var_Params['u0'], self.var_Params['Yx'], self.var_Params['k1']
X0, S0 = self.var_Conditions['X0'], self.var_Conditions['S0']
if self.var_OperationMode == 'batch':
rX0 = u0 * X0 # Initial
rS0 = -(rX0 / (Yx / S0)) # Startwert Änderungsrate S
rP0 = (k1 * u0) * X0 # Startwert Änderungsrate P
else:
rX0 = 0
rS0 = 0
rP0 = 0 # TODO: Fedbatch & Konti Ergänzen!
start_params = {
'rX0': rX0,
'rS0': rS0,
'rP0': rP0
}
return start_params
def calculate_monod(self, hidden_params=False):
'''
Calculates monod kinetics for current model instance.
Output:
monod_result: dict, Result of kinetics (X, S, P, µ, rX, rS, rP) as Lists
Test correct length of model output
>>> TestModelBatch = Monod_Model()
>>> monod_result = TestModelBatch.calculate_monod()
>>> len(monod_result) == 7
True
>>> len(monod_result['X']) == TestModelBatch.var_Params['duration']
True
>>> max(monod_result['u']) <= TestModelBatch.var_Params['umax']
True
'''
# Get start parameters
params = self.get_start_params(hidden_params)
rX, rS, rP = [params['rX0']], [params['rS0']], [params['rP0']]
if hidden_params:
duration, umax, Ks, = self.var_Params['duration'], self.__hiddenParams['umax'], self.__hiddenParams['Ks']
Yx, k1, u = self.__hiddenParams['Yx'], self.__hiddenParams['k1'], [self.__hiddenParams['u0']]
else:
duration, umax, Ks, = self.var_Params['duration'], self.var_Params['umax'], self.var_Params['Ks']
Yx, k1, u = self.var_Params['Yx'], self.var_Params['k1'], [self.var_Params['u0']]
S, P, X = [self.var_Conditions['S0']], [self.var_Conditions['P0']], [self.var_Conditions['X0']]
for j in range(1, duration):
new_u = umax * S[j - 1] / (Ks + S[j - 1]) # Change of µ
if new_u >= 0:
u.append(new_u)
else:
u.append(0)
new_rX = u[j - 1] * X[j - 1] # Derivative of Biomass
if new_rX >= 0:
rX.append(new_rX)
else:
rX.append(0)
X.append(X[j - 1] + rX[j]) # New [Biomass]
new_rS = -(rX[j - 1] / Yx) # Derivative of substrate
if new_rS <= 0:
rS.append(new_rS)
else:
rS.append(0)
new_S = S[j - 1] + rS[j]
if new_S < 0:
S.append(0) # New [Substrate]
else:
S.append(new_S)
new_rP = (k1 * u[j]) * X[j] # Derivative of product
if new_rP >= 0:
rP.append(new_rP)
else:
rP.append(0)
P.append(P[j - 1] + rP[j]) # New [Product]
monod_result = {
'X': X,
'S': S,
'P': P,
'u': u,
'rX': rX,
'rS': rS,
'rP': rP
}
if not hidden_params:
self.Results = monod_result
return monod_result
def plot_results(self, offline_results: pd.DataFrame = None):
'''
Returns plot of current model instance results (X,S,P vs. Time).
Raises AttributeError if no results are stored inside the model when the method is called.
>>> TestModelBatch = Monod_Model()
>>> TestModelBatch.plot_results()
Traceback (most recent call last):
...
AttributeError: No Results yet! Call Monod_Model.calculate_monod() before plotting.
'''
if not hasattr(self, 'Results'):
raise AttributeError('No Results yet! Call Monod_Model.calculate_monod() before plotting.')
time = range(1, self.var_Params['duration']+1)
X, S, P = self.Results['X'], self.Results['S'], self.Results['P']
plt.plot(time, X, 'r', time, S, 'g', time, P, 'b')
if offline_results is not None:
off_time = offline_results.index + 1
off_X, off_S, off_P = offline_results['X'], offline_results['S'], offline_results['P']
plt.plot(off_time, off_X, 'r', off_time, off_S, 'g', off_time, off_P, 'b', linestyle='', marker='X')
plt.legend(['Biomass [g/L]', 'Substrate [g/L]', 'Product [g/L]'])
plt.ylabel('Biomass, Substrate & Product Concentration [g/L]')
plt.xlabel('Process Duration [h]')
plt.title(self.__Description)
plt.show()
return plt
def calc_new_mu(self, step: int):
'''
Calculates new µ value depending on different inhibition terms.
Raises AttributeError if mode of operation or inhibition term is unsupported.
>>> TestModelBatch = Monod_Model()
>>> TestModelBatch.var_OperationMode = 'test'
>>> TestModelBatch.calc_new_mu(1)
Traceback (most recent call last):
...
AttributeError: Unsupported mode of operation. Check to see if Model.var_OperationMode is one of "batch", "fedbatch", or "continuous".
'''
self.var_Paramsparams = self.get_start_params()
duration, umax, Ks, = self.var_Params['duration'], self.var_Params['umax'], self.var_Params['Ks']
# Yx, k1, u = self.var_Params['Yx'], self.var_Params['k1'], [self.var_Params['u0']]
# TODO: Anpassen auf iteratives Aufrufen der Monod_Calculation
S, P, X = [self.var_Conditions['S0']], [self.var_Conditions['P0']], [self.var_Conditions['X0']]
if self.var_OperationMode == 'batch':
new_u = umax * S[step - 1] / (Ks + S[step - 1])
elif self.var_OperationMode == 'fedbatch':
new_u = 0
elif self.var_OperationMode == 'continuous':
new_u = 0
else:
raise AttributeError('Unsupported mode of operation. Check to see if Model.var_OperationMode is one of '
'"batch", "fedbatch", or "continuous".')
return new_u
def results_to_csv(self, experiments_ID: int = 0):
'''
Writes calculated results to .csv file in dir /csv_files
:param experiments_ID:
:return:
'''
pathname = os.path.relpath('model_results')
if not os.path.isdir(pathname):
os.mkdir(pathname)
df = pd.DataFrame(self.Results)
filename = os.path.join(pathname, f'Experiment_{experiments_ID}_{self.__ModelName}.csv')
df.to_csv(filename)
def to_json(self, suffix: str = None):
'''
Serializes model results to .json.
'''
pathname = os.path.relpath('json_files')
if not os.path.isdir(pathname):
os.mkdir(pathname)
if suffix:
filename = f'{self.__ModelName}_{suffix}.json'
else:
filename = f'{self.__ModelName}.json'
path_file_name = os.path.join(pathname, filename)
with open(path_file_name, 'w') as outfile:
json.dump(self, outfile, indent=4, default=lambda o: o.__dict__)
return path_file_name
def from_json(self, json_path: str):
'''
Deserializes model from .json.
'''
with open(json_path, 'r') as file:
readout = json.load(file)
new_model = MonodModel()
new_model.var_Params = readout['var_Params']
new_model.var_Conditions = readout['var_Conditions']
new_model.var_Organism = readout['var_Organism']
new_model.var_OperationMode = readout['var_OperationMode']
new_model.Results = readout['Results']
new_model.__Description = readout['_MonodModel__Description']
return new_model
def Make_SubstrateGrowthExp(self, substrate_values: list, experiments_ID: int):
'''
'''
ncols = 2
nrows = ceil(len(substrate_values)/ncols)
for value in substrate_values:
assert type(value) == int or float, 'Substrate value is not a number!'
self.var_Conditions['S0'] = value
self.calculate_monod()
plt = self.plot_results()
self.to_json(suffix=str(experiments_ID))
self.results_to_csv(experiments_ID)
self.var_ExpCount += 1
return plt
def offline_samples(self, experiments_ID: int = 0):
'''
Simulates manual sampling of process with samples at discrete timesteps.
:return:
'''
results = pd.DataFrame(self.calculate_monod(hidden_params=True))
sampling_times = [0, 2, 4, 6, 8, 20, 23]
offline_values = results.iloc[sampling_times][['X', 'S', 'P']]
pathname = os.path.relpath('offline_samples')
if not os.path.isdir(pathname):
os.mkdir(pathname)
mu, sigma = 0, 0.1
noise = np.random.normal(mu, sigma, [offline_values.shape[0], offline_values.shape[1]])
offline_values = offline_values + noise
offline_values[offline_values < 0] = np.nan
filename = os.path.join(pathname, f'Experiment_{experiments_ID}_{self.__ModelName}.csv')
offline_values.to_csv(filename)
time = offline_values.index
X, S, P = offline_values['X'], offline_values['S'], offline_values['P']
plt.plot(time, X, 'r', time, S, 'g', time, P, 'b', linestyle='', marker='X')
plt.legend(['Biomass [g/L]', 'Substrate [g/L]', 'Product [g/L]'])
plt.ylabel('Biomass, Substrate & Product Concentration [g/L]')
plt.xlabel('Process Duration [h]')
plt.title(self.__Description)
plt.show()
return filename
def load_offline_values(self, experiment_name):
'''
:param experiments_ID:
:return:
'''
return pd.read_csv(experiment_name, index_col=0)
def get_optimal_X(self):
save_old_S = self.var_Conditions['S0']
self.var_Conditions['S0'] = self.__optimal_S
opt_res = self.calculate_monod(hidden_params=True)
optimal_X = round(max(opt_res['X']), 1)
self.var_Conditions['S0'] = save_old_S
print(f'Desired biomass for this process is {optimal_X} g/L.')
self.__optimal_X = optimal_X
return optimal_X
def calc_rmse(self, param_list=None):
'''
:param offline_values:
:return:
'''
if param_list is not None:
self.set_params(param_list, count=False)
self.calculate_monod()
calc_X, calc_S, calc_P = self.Results['X'], self.Results['S'], self.Results['P']
right_values = self.calculate_monod(hidden_params=True)
real_X, real_S, real_P = right_values['X'], right_values['S'], right_values['P']
rmse = sklearn.metrics.mean_squared_error([calc_X, calc_S, calc_P], [real_X, real_S, real_P], squared=False)
return rmse
def fit_model(self, param_list: list):
'''
:param param_list:
:param offline_values:
:return:
'''
# umax, Ks, Yx, k1
bounds = Bounds([0.5, 7, 0.4, 0.05], [1.1, 10, 0.6, 0.2])
optimizer = minimize(self.calc_rmse, param_list, bounds=bounds)
print(f'Model optimized in {optimizer.nit} steps.')
return [optimizer.x[0], optimizer.x[1], optimizer.x[2], optimizer.x[3]]
def set_params(self, param_list: list, count=True):
'''
:param count:
:param param_list:
:return:
'''
self.var_Params['umax'] = param_list[0]
self.var_Params['Ks'] = param_list[1]
self.var_Params['Yx'] = param_list[2]
self.var_Params['k1'] = param_list[3]
if count:
self.var_ModelingCount += 1
def set_conditions(self, condition_list: list, count=True):
'''
:param condition_list:
:param count:
:return:
'''
self.var_Conditions['S0'] = condition_list[0]
self.var_Conditions['X0'] = condition_list[1]
if count:
self.var_ExpCount += 1
def get_num_experiments(self):
'''
:return:
'''
print(f'Model parameters were changed {self.var_ModelingCount} times.\n'
f'{self.var_ExpCount} Experiments performed.')
def plot_linear_fit(self, offline_results: pd.DataFrame):
'''
:param offline_results:
:return:
'''
if not hasattr(self, 'Results'):
self.calculate_monod()
X, S, P = self.Results['X'], self.Results['S'], self.Results['P']
time = range(1, self.var_Params['duration'] + 1)
plt.plot(time, X, 'r', time, S, 'g', time, P, 'b')
off_time = offline_results.index + 1
offline_results.fillna(0, inplace=True)
off_X, off_S, off_P = offline_results['X'], offline_results['S'], offline_results['P']
off_dict = {'X': [], 'S': [], 'P': []}
for i in range(0, self.var_Params['duration']):
if i in offline_results.index.to_list():
off_dict['X'].append(off_X[i])
off_dict['S'].append(off_S[i])
off_dict['P'].append(off_P[i])
else:
off_dict['X'].append(np.nan)
off_dict['S'].append(np.nan)
off_dict['P'].append(np.nan)
off_df = pd.DataFrame(off_dict)
off_df.interpolate(inplace=True)
rmse = sklearn.metrics.mean_squared_error([X, S, P], [off_df['X'], off_df['S'], off_df['P']], squared=False)
plt.plot(off_time, off_X, 'r', off_time, off_S, 'g', off_time, off_P, 'b', linestyle='--', marker='X')
plt.legend(['Biomass [g/L]', 'Substrate [g/L]', 'Product [g/L]'])
plt.ylabel('Biomass, Substrate & Product Concentration [g/L]')
plt.xlabel('Process Duration [h]')
plt.title(f'RMSE of linear fit: {round(rmse, 3)}')
plt.show()
return rmse
def get_max_biomass(self):
if not hasattr(self, 'Results'):
self.calculate_monod()
X = self.Results['X']
max_X = max(X)
print(f'Max. biomass in current setup is: {round(max_X, 1)} g/L.')
mae_X = sklearn.metrics.mean_absolute_error([max_X], [self.__optimal_X])
print(f'Absolute error of current and desired biomass: {round(mae_X, 3)}')
return max_X