diff --git a/docs/source/en/_toctree.yml b/docs/source/en/_toctree.yml index 59f0ff48d22a75..9f6b1e1782e837 100644 --- a/docs/source/en/_toctree.yml +++ b/docs/source/en/_toctree.yml @@ -424,6 +424,8 @@ title: GPTSw3 - local: model_doc/granite title: Granite + - local: model_doc/granitemoe + title: GraniteMoe - local: model_doc/herbert title: HerBERT - local: model_doc/ibert diff --git a/docs/source/en/index.md b/docs/source/en/index.md index cc5d7990929aa4..362fce28574f3f 100644 --- a/docs/source/en/index.md +++ b/docs/source/en/index.md @@ -159,6 +159,7 @@ Flax), PyTorch, and/or TensorFlow. | [GPTBigCode](model_doc/gpt_bigcode) | ✅ | ❌ | ❌ | | [GPTSAN-japanese](model_doc/gptsan-japanese) | ✅ | ❌ | ❌ | | [Granite](model_doc/granite) | ✅ | ❌ | ❌ | +| [GraniteMoeMoe](model_doc/granitemoe) | ✅ | ❌ | ❌ | | [Graphormer](model_doc/graphormer) | ✅ | ❌ | ❌ | | [Grounding DINO](model_doc/grounding-dino) | ✅ | ❌ | ❌ | | [GroupViT](model_doc/groupvit) | ✅ | ✅ | ❌ | diff --git a/docs/source/en/model_doc/granitemoe.md b/docs/source/en/model_doc/granitemoe.md new file mode 100644 index 00000000000000..176e833c24c661 --- /dev/null +++ b/docs/source/en/model_doc/granitemoe.md @@ -0,0 +1,74 @@ + + +# GraniteMoe + +## Overview + +The GraniteMoe model was proposed in [Power Scheduler: A Batch Size and Token Number Agnostic Learning Rate Scheduler](https://arxiv.org/abs/2408.13359) by Yikang Shen, Matthew Stallone, Mayank Mishra, Gaoyuan Zhang, Shawn Tan, Aditya Prasad, Adriana Meza Soria, David D. Cox and Rameswar Panda. + +PowerMoE-3B is a 3B sparse Mixture-of-Experts (sMoE) language model trained with the Power learning rate scheduler. It sparsely activates 800M parameters for each token. It is trained on a mix of open-source and proprietary datasets. PowerMoE-3B has shown promising results compared to other dense models with 2x activate parameters across various benchmarks, including natural language multi-choices, code generation, and math reasoning. + +The abstract from the paper is the following: + +*Finding the optimal learning rate for language model pretraining is a challenging task. +This is not only because there is a complicated correlation between learning rate, batch size, number of training tokens, model size, and other hyperparameters but also because it is prohibitively expensive to perform a hyperparameter search for large language models with Billions or Trillions of parameters. Recent studies propose using small proxy models and small corpus to perform hyperparameter searches and transposing the optimal parameters to large models and large corpus. While the zero-shot transferability is theoretically and empirically proven for model size related hyperparameters, like depth and width, the zero-shot transfer from small corpus to large corpus is underexplored. +In this paper, we study the correlation between optimal learning rate, batch size, and number of training tokens for the recently proposed WSD scheduler. After thousands of small experiments, we found a power-law relationship between variables and demonstrated its transferability across model sizes. Based on the observation, we propose a new learning rate scheduler, Power scheduler, that is agnostic about the number of training tokens and batch size. The experiment shows that combining the Power scheduler with Maximum Update Parameterization (\mup) can consistently achieve impressive performance with one set of hyperparameters regardless of the number of training tokens, batch size, model size, and even model architecture. Our 3B dense and MoE models trained with the Power scheduler achieve comparable performance as state-of-the-art small language models. +We [open source](https://huggingface.co/collections/ibm/power-lm-66be64ae647ddf11b9808000) these pretrained models.* + +Tips: + +```python +import torch +from transformers import AutoModelForCausalLM, AutoTokenizer + +model_path = "ibm/PowerMoE-3b" +tokenizer = AutoTokenizer.from_pretrained(model_path) + +# drop device_map if running on CPU +model = AutoModelForCausalLM.from_pretrained(model_path, device_map="auto") +model.eval() + +# change input text as desired +prompt = "Write a code to find the maximum value in a list of numbers." + +# tokenize the text +input_tokens = tokenizer(prompt, return_tensors="pt") +# generate output tokens +output = model.generate(**input_tokens, max_new_tokens=100) +# decode output tokens into text +output = tokenizer.batch_decode(output) +# loop over the batch to print, in this example the batch size is 1 +for i in output: + print(i) +``` + +This model was contributed by [mayank-mishra](https://huggingface.co/mayank-mishra). + + +## GraniteMoeConfig + +[[autodoc]] GraniteMoeConfig + +## GraniteMoeModel + +[[autodoc]] GraniteMoeModel + - forward + +## GraniteMoeForCausalLM + +[[autodoc]] GraniteMoeForCausalLM + - forward diff --git a/docs/source/en/perf_infer_gpu_one.md b/docs/source/en/perf_infer_gpu_one.md index 73ae4d5c0c921c..7ecfe46dd22b01 100644 --- a/docs/source/en/perf_infer_gpu_one.md +++ b/docs/source/en/perf_infer_gpu_one.md @@ -52,6 +52,7 @@ FlashAttention-2 is currently supported for the following architectures: * [GPTNeoX](https://huggingface.co/docs/transformers/model_doc/gpt_neox#transformers.GPTNeoXModel) * [GPT-J](https://huggingface.co/docs/transformers/model_doc/gptj#transformers.GPTJModel) * [Granite](https://huggingface.co/docs/transformers/model_doc/granite#transformers.GraniteModel) +* [GraniteMoe](https://huggingface.co/docs/transformers/model_doc/granitemoe#transformers.GraniteMoeModel) * [Idefics2](https://huggingface.co/docs/transformers/model_doc/idefics2#transformers.Idefics2Model) * [Falcon](https://huggingface.co/docs/transformers/model_doc/falcon#transformers.FalconModel) * [JetMoe](https://huggingface.co/docs/transformers/model_doc/jetmoe#transformers.JetMoeModel) @@ -226,6 +227,7 @@ For now, Transformers supports SDPA inference and training for the following arc * [Hubert](https://huggingface.co/docs/transformers/model_doc/hubert#transformers.HubertModel) * [Idefics](https://huggingface.co/docs/transformers/model_doc/idefics#transformers.IdeficsModel) * [Granite](https://huggingface.co/docs/transformers/model_doc/granite#transformers.GraniteModel) +* [GraniteMoe](https://huggingface.co/docs/transformers/model_doc/granitemoe#transformers.GraniteMoeModel) * [JetMoe](https://huggingface.co/docs/transformers/model_doc/jetmoe#transformers.JetMoeModel) * [Jamba](https://huggingface.co/docs/transformers/model_doc/jamba#transformers.JambaModel) * [Llama](https://huggingface.co/docs/transformers/model_doc/llama#transformers.LlamaModel) diff --git a/src/transformers/__init__.py b/src/transformers/__init__.py index aa13a97fe46150..0894b1c1def88c 100755 --- a/src/transformers/__init__.py +++ b/src/transformers/__init__.py @@ -465,6 +465,7 @@ "models.gpt_sw3": [], "models.gptj": ["GPTJConfig"], "models.granite": ["GraniteConfig"], + "models.granitemoe": ["GraniteMoeConfig"], "models.grounding_dino": [ "GroundingDinoConfig", "GroundingDinoProcessor", @@ -2343,6 +2344,13 @@ "GranitePreTrainedModel", ] ) + _import_structure["models.granitemoe"].extend( + [ + "GraniteMoeForCausalLM", + "GraniteMoeModel", + "GraniteMoePreTrainedModel", + ] + ) _import_structure["models.grounding_dino"].extend( [ "GroundingDinoForObjectDetection", @@ -5237,6 +5245,7 @@ ) from .models.gptj import GPTJConfig from .models.granite import GraniteConfig + from .models.granitemoe import GraniteMoeConfig from .models.grounding_dino import ( GroundingDinoConfig, GroundingDinoProcessor, @@ -6976,6 +6985,11 @@ GraniteModel, GranitePreTrainedModel, ) + from .models.granitemoe import ( + GraniteMoeForCausalLM, + GraniteMoeModel, + GraniteMoePreTrainedModel, + ) from .models.grounding_dino import ( GroundingDinoForObjectDetection, GroundingDinoModel, diff --git a/src/transformers/models/__init__.py b/src/transformers/models/__init__.py index 5b5d1e7902bd67..37e611fa7aebea 100644 --- a/src/transformers/models/__init__.py +++ b/src/transformers/models/__init__.py @@ -106,6 +106,7 @@ gpt_sw3, gptj, granite, + granitemoe, grounding_dino, groupvit, herbert, diff --git a/src/transformers/models/auto/configuration_auto.py b/src/transformers/models/auto/configuration_auto.py index 5a6ec14e78cd43..d220dd2fd882e0 100644 --- a/src/transformers/models/auto/configuration_auto.py +++ b/src/transformers/models/auto/configuration_auto.py @@ -123,6 +123,7 @@ ("gptj", "GPTJConfig"), ("gptsan-japanese", "GPTSanJapaneseConfig"), ("granite", "GraniteConfig"), + ("granitemoe", "GraniteMoeConfig"), ("graphormer", "GraphormerConfig"), ("grounding-dino", "GroundingDinoConfig"), ("groupvit", "GroupViTConfig"), @@ -417,6 +418,7 @@ ("gptj", "GPT-J"), ("gptsan-japanese", "GPTSAN-japanese"), ("granite", "Granite"), + ("granitemoe", "GraniteMoeMoe"), ("graphormer", "Graphormer"), ("grounding-dino", "Grounding DINO"), ("groupvit", "GroupViT"), diff --git a/src/transformers/models/auto/modeling_auto.py b/src/transformers/models/auto/modeling_auto.py index 2bc71f07970aee..31a8f06f675832 100644 --- a/src/transformers/models/auto/modeling_auto.py +++ b/src/transformers/models/auto/modeling_auto.py @@ -120,6 +120,7 @@ ("gptj", "GPTJModel"), ("gptsan-japanese", "GPTSanJapaneseForConditionalGeneration"), ("granite", "GraniteModel"), + ("granitemoe", "GraniteMoeModel"), ("graphormer", "GraphormerModel"), ("grounding-dino", "GroundingDinoModel"), ("groupvit", "GroupViTModel"), @@ -485,6 +486,7 @@ ("gpt_neox_japanese", "GPTNeoXJapaneseForCausalLM"), ("gptj", "GPTJForCausalLM"), ("granite", "GraniteForCausalLM"), + ("granitemoe", "GraniteMoeForCausalLM"), ("jamba", "JambaForCausalLM"), ("jetmoe", "JetMoeForCausalLM"), ("llama", "LlamaForCausalLM"), diff --git a/src/transformers/models/granitemoe/__init__.py b/src/transformers/models/granitemoe/__init__.py new file mode 100644 index 00000000000000..f16f84abd9aa4d --- /dev/null +++ b/src/transformers/models/granitemoe/__init__.py @@ -0,0 +1,57 @@ +# Copyright 2024 EleutherAI and The HuggingFace Inc. team. All rights reserved. +# +# Licensed under the Apache License, Version 2.0 (the "License"); +# you may not use this file except in compliance with the License. +# You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +# Unless required by applicable law or agreed to in writing, software +# distributed under the License is distributed on an "AS IS" BASIS, +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +# See the License for the specific language governing permissions and +# limitations under the License. +from typing import TYPE_CHECKING + +from ...utils import ( + OptionalDependencyNotAvailable, + _LazyModule, + is_torch_available, +) + + +_import_structure = { + "configuration_granitemoe": ["GraniteMoeConfig"], +} + +try: + if not is_torch_available(): + raise OptionalDependencyNotAvailable() +except OptionalDependencyNotAvailable: + pass +else: + _import_structure["modeling_granitemoe"] = [ + "GraniteMoeForCausalLM", + "GraniteMoeModel", + "GraniteMoePreTrainedModel", + ] + +if TYPE_CHECKING: + from .configuration_granitemoe import GraniteMoeConfig + + try: + if not is_torch_available(): + raise OptionalDependencyNotAvailable() + except OptionalDependencyNotAvailable: + pass + else: + from .modeling_granitemoe import ( + GraniteMoeForCausalLM, + GraniteMoeModel, + GraniteMoePreTrainedModel, + ) + +else: + import sys + + sys.modules[__name__] = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__) diff --git a/src/transformers/models/granitemoe/configuration_granitemoe.py b/src/transformers/models/granitemoe/configuration_granitemoe.py new file mode 100644 index 00000000000000..e0807b7795257b --- /dev/null +++ b/src/transformers/models/granitemoe/configuration_granitemoe.py @@ -0,0 +1,191 @@ +# coding=utf-8 +# Copyright 2024 EleutherAI and the HuggingFace Inc. team. All rights reserved. +# +# This code is based on EleutherAI's GPT-NeoX library and the GPT-NeoX +# and OPT implementations in this library. It has been modified from its +# original forms to accommodate minor architectural differences compared +# to GPT-NeoX and OPT used by the Meta AI team that trained the model. +# +# Licensed under the Apache License, Version 2.0 (the "License"); +# you may not use this file except in compliance with the License. +# You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +# Unless required by applicable law or agreed to in writing, software +# distributed under the License is distributed on an "AS IS" BASIS, +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +# See the License for the specific language governing permissions and +# limitations under the License. +"""GraniteMoe model configuration""" + +from ...configuration_utils import PretrainedConfig +from ...modeling_rope_utils import rope_config_validation +from ...utils import logging + + +logger = logging.get_logger(__name__) + + +class GraniteMoeConfig(PretrainedConfig): + r""" + This is the configuration class to store the configuration of a [`GraniteMoeModel`]. It is used to instantiate an GraniteMoe + model according to the specified arguments, defining the model architecture. Instantiating a configuration with the + defaults will yield a similar configuration to that of the GraniteMoe-3B. + + Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the + documentation from [`PretrainedConfig`] for more information. + + + Args: + vocab_size (`int`, *optional*, defaults to 32000): + Vocabulary size of the GraniteMoe model. Defines the number of different tokens that can be represented by the + `inputs_ids` passed when calling [`GraniteMoeModel`] + hidden_size (`int`, *optional*, defaults to 4096): + Dimension of the hidden representations. + intermediate_size (`int`, *optional*, defaults to 11008): + Dimension of the MLP representations. + num_hidden_layers (`int`, *optional*, defaults to 32): + Number of hidden layers in the Transformer decoder. + num_attention_heads (`int`, *optional*, defaults to 32): + Number of attention heads for each attention layer in the Transformer decoder. + num_key_value_heads (`int`, *optional*): + This is the number of key_value heads that should be used to implement Grouped Query Attention. If + `num_key_value_heads=num_attention_heads`, the model will use Multi Head Attention (MHA), if + `num_key_value_heads=1` the model will use Multi Query Attention (MQA) otherwise GQA is used. When + converting a multi-head checkpoint to a GQA checkpoint, each group key and value head should be constructed + by meanpooling all the original heads within that group. For more details checkout [this + paper](https://arxiv.org/pdf/2305.13245.pdf). If it is not specified, will default to + `num_attention_heads`. + hidden_act (`str` or `function`, *optional*, defaults to `"silu"`): + The non-linear activation function (function or string) in the decoder. + max_position_embeddings (`int`, *optional*, defaults to 2048): + The maximum sequence length that this model might ever be used with. + initializer_range (`float`, *optional*, defaults to 0.02): + The standard deviation of the truncated_normal_initializer for initializing all weight matrices. + rms_norm_eps (`float`, *optional*, defaults to 1e-06): + The epsilon used by the rms normalization layers. + use_cache (`bool`, *optional*, defaults to `True`): + Whether or not the model should return the last key/values attentions (not used by all models). Only + relevant if `config.is_decoder=True`. + pad_token_id (`int`, *optional*): + Padding token id. + bos_token_id (`int`, *optional*, defaults to 1): + Beginning of stream token id. + eos_token_id (`int`, *optional*, defaults to 2): + End of stream token id. + tie_word_embeddings (`bool`, *optional*, defaults to `False`): + Whether to tie weight embeddings + rope_theta (`float`, *optional*, defaults to 10000.0): + The base period of the RoPE embeddings. + rope_scaling (`Dict`, *optional*): + Dictionary containing the scaling configuration for the RoPE embeddings. Currently supports two scaling + strategies: linear and dynamic. Their scaling factor must be a float greater than 1. The expected format is + `{"type": strategy name, "factor": scaling factor}`. When using this flag, don't update + `max_position_embeddings` to the expected new maximum. See the following thread for more information on how + these scaling strategies behave: + https://www.reddit.com/r/LocalLLaMA/comments/14mrgpr/dynamically_scaled_rope_further_increases/. This is an + experimental feature, subject to breaking API changes in future versions. + attention_bias (`bool`, *optional*, defaults to `False`): + Whether to use a bias in the query, key, value and output projection layers during self-attention. + attention_dropout (`float`, *optional*, defaults to 0.0): + The dropout ratio for the attention probabilities. + embedding_multiplier (`float`, *optional*, defaults to 1.0): embedding multiplier + logits_scaling (`float`, *optional*, defaults to 1.0): divisor for output logits + residual_multiplier (`float`, *optional*, defaults to 1.0): residual multiplier + attention_multiplier (`float`, *optional*, defaults to 1.0): attention multiplier + num_local_experts (`int`, *optional*, defaults to 8): total number of experts + num_experts_per_tok (`int`, *optional*, defaults to 2): number of experts per token + output_router_logits (`bool`, *optional*, defaults to `False`): + Whether or not the router logits should be returned by the model. Enabeling this will also + allow the model to output the auxiliary loss. + router_aux_loss_coef (`float`, *optional*, defaults to 0.001): router auxialiary loss coefficient + + ```python + >>> from transformers import GraniteMoeModel, GraniteMoeConfig + + >>> # Initializing a GraniteMoe granitemoe-3b style configuration + >>> configuration = GraniteMoeConfig() + + >>> # Initializing a model from the granitemoe-7b style configuration + >>> model = GraniteMoeModel(configuration) + + >>> # Accessing the model configuration + >>> configuration = model.config + ```""" + + model_type = "granitemoe" + keys_to_ignore_at_inference = ["past_key_values"] + + def __init__( + self, + vocab_size=32000, + hidden_size=4096, + intermediate_size=11008, + num_hidden_layers=32, + num_attention_heads=32, + num_key_value_heads=None, + hidden_act="silu", + max_position_embeddings=2048, + initializer_range=0.02, + rms_norm_eps=1e-6, + use_cache=True, + pad_token_id=None, + bos_token_id=1, + eos_token_id=2, + tie_word_embeddings=False, + rope_theta=10000.0, + rope_scaling=None, + attention_bias=False, + attention_dropout=0.0, + embedding_multiplier=1.0, + logits_scaling=1.0, + residual_multiplier=1.0, + attention_multiplier=1.0, + num_local_experts=8, + num_experts_per_tok=2, + output_router_logits=False, + router_aux_loss_coef=0.001, + **kwargs, + ): + self.vocab_size = vocab_size + self.max_position_embeddings = max_position_embeddings + self.hidden_size = hidden_size + self.intermediate_size = intermediate_size + self.num_hidden_layers = num_hidden_layers + self.num_attention_heads = num_attention_heads + + # for backward compatibility + if num_key_value_heads is None: + num_key_value_heads = num_attention_heads + + self.num_key_value_heads = num_key_value_heads + self.hidden_act = hidden_act + self.initializer_range = initializer_range + self.rms_norm_eps = rms_norm_eps + self.use_cache = use_cache + self.rope_theta = rope_theta + self.rope_scaling = rope_scaling + + self.attention_bias = attention_bias + self.attention_dropout = attention_dropout + + self.embedding_multiplier = embedding_multiplier + self.logits_scaling = logits_scaling + self.residual_multiplier = residual_multiplier + self.attention_multiplier = attention_multiplier + + self.num_local_experts = num_local_experts + self.num_experts_per_tok = num_experts_per_tok + self.output_router_logits = output_router_logits + self.router_aux_loss_coef = router_aux_loss_coef + + super().__init__( + pad_token_id=pad_token_id, + bos_token_id=bos_token_id, + eos_token_id=eos_token_id, + tie_word_embeddings=tie_word_embeddings, + **kwargs, + ) + + rope_config_validation(self) diff --git a/src/transformers/models/granitemoe/modeling_granitemoe.py b/src/transformers/models/granitemoe/modeling_granitemoe.py new file mode 100644 index 00000000000000..3ac462bdad34db --- /dev/null +++ b/src/transformers/models/granitemoe/modeling_granitemoe.py @@ -0,0 +1,1461 @@ +# coding=utf-8 +# Copyright 2024 IBM and the HuggingFace Inc. team. All rights reserved. +# +# +# Licensed under the Apache License, Version 2.0 (the "License"); +# you may not use this file except in compliance with the License. +# You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +# Unless required by applicable law or agreed to in writing, software +# distributed under the License is distributed on an "AS IS" BASIS, +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +# See the License for the specific language governing permissions and +# limitations under the License. +from typing import List, Optional, Tuple, Union + +import torch +import torch.nn.functional as F +import torch.utils.checkpoint +from torch import nn +from torch.nn import CrossEntropyLoss + +from ...activations import ACT2FN +from ...cache_utils import Cache, DynamicCache, StaticCache +from ...modeling_attn_mask_utils import AttentionMaskConverter +from ...modeling_flash_attention_utils import _flash_attention_forward +from ...modeling_outputs import ( + BaseModelOutputWithPast, + MoeCausalLMOutputWithPast, + MoeModelOutputWithPast, +) +from ...modeling_rope_utils import ROPE_INIT_FUNCTIONS +from ...modeling_utils import PreTrainedModel +from ...pytorch_utils import ALL_LAYERNORM_LAYERS +from ...utils import ( + add_start_docstrings, + add_start_docstrings_to_model_forward, + is_flash_attn_greater_or_equal_2_10, + logging, + replace_return_docstrings, +) +from .configuration_granitemoe import GraniteMoeConfig + + +logger = logging.get_logger(__name__) + +_CONFIG_FOR_DOC = "GraniteMoeConfig" + + +# Copied from transformers.models.granite.modeling_granite._prepare_4d_causal_attention_mask_with_cache_position with Granite->GraniteMoe +def _prepare_4d_causal_attention_mask_with_cache_position( + attention_mask: torch.Tensor, + sequence_length: int, + target_length: int, + dtype: torch.dtype, + device: torch.device, + min_dtype: float, + cache_position: torch.Tensor, + batch_size: int, +): + """ + Creates a causal 4D mask of shape `(batch_size, 1, query_length, key_value_length)` from a 2D mask of shape + `(batch_size, key_value_length)`, or if the input `attention_mask` is already 4D, do nothing. + + Args: + attention_mask (`torch.Tensor`): + A 2D attention mask of shape `(batch_size, key_value_length)` or a 4D attention mask of shape `(batch_size, 1, query_length, key_value_length)`. + sequence_length (`int`): + The sequence length being processed. + target_length (`int`): + The target length: when generating with static cache, the mask should be as long as the static cache, to account for the 0 padding, the part of the cache that is not filled yet. + dtype (`torch.dtype`): + The dtype to use for the 4D attention mask. + device (`torch.device`): + The device to plcae the 4D attention mask on. + min_dtype (`float`): + The minimum value representable with the dtype `dtype`. + cache_position (`torch.Tensor`): + Indices depicting the position of the input sequence tokens in the sequence. + batch_size (`torch.Tensor`): + Batch size. + """ + if attention_mask is not None and attention_mask.dim() == 4: + # In this case we assume that the mask comes already in inverted form and requires no inversion or slicing. + causal_mask = attention_mask + else: + causal_mask = torch.full((sequence_length, target_length), fill_value=min_dtype, dtype=dtype, device=device) + if sequence_length != 1: + causal_mask = torch.triu(causal_mask, diagonal=1) + causal_mask *= torch.arange(target_length, device=device) > cache_position.reshape(-1, 1) + causal_mask = causal_mask[None, None, :, :].expand(batch_size, 1, -1, -1) + if attention_mask is not None: + causal_mask = causal_mask.clone() # copy to contiguous memory for in-place edit + mask_length = attention_mask.shape[-1] + padding_mask = causal_mask[:, :, :, :mask_length] + attention_mask[:, None, None, :] + padding_mask = padding_mask == 0 + causal_mask[:, :, :, :mask_length] = causal_mask[:, :, :, :mask_length].masked_fill( + padding_mask, min_dtype + ) + + return causal_mask + + +# Copied from transformers.models.jetmoe.modeling_jetmoe.load_balancing_loss_func +def load_balancing_loss_func( + gate_logits: torch.Tensor, num_experts: torch.Tensor = None, top_k=2, attention_mask: Optional[torch.Tensor] = None +) -> float: + r""" + Computes auxiliary load balancing loss as in Switch Transformer - implemented in Pytorch. + + See Switch Transformer (https://arxiv.org/abs/2101.03961) for more details. This function implements the loss + function presented in equations (4) - (6) of the paper. It aims at penalizing cases where the routing between + experts is too unbalanced. + + Args: + gate_logits (Union[`torch.Tensor`, Tuple[torch.Tensor]): + Logits from the `gate`, should be a tuple of model.config.num_hidden_layers tensors of + shape [batch_size X sequence_length, num_experts]. + attention_mask (`torch.Tensor`, *optional*): + The attention_mask used in forward function + shape [batch_size X sequence_length] if not None. + num_experts (`int`, *optional*): + Number of experts + + Returns: + The auxiliary loss. + """ + if gate_logits is None or not isinstance(gate_logits, tuple): + return 0 + + if isinstance(gate_logits, tuple): + compute_device = gate_logits[0].device + concatenated_gate_logits = torch.cat([layer_gate.to(compute_device) for layer_gate in gate_logits], dim=0) + + routing_weights = torch.nn.functional.softmax(concatenated_gate_logits, dim=-1) + + _, selected_experts = torch.topk(routing_weights, top_k, dim=-1) + + expert_mask = torch.nn.functional.one_hot(selected_experts, num_experts) + + if attention_mask is None: + # Compute the percentage of tokens routed to each experts + tokens_per_expert = torch.mean(expert_mask.float(), dim=0) + + # Compute the average probability of routing to these experts + router_prob_per_expert = torch.mean(routing_weights, dim=0) + else: + batch_size, sequence_length = attention_mask.shape + num_hidden_layers = concatenated_gate_logits.shape[0] // (batch_size * sequence_length) + + # Compute the mask that masks all padding tokens as 0 with the same shape of expert_mask + expert_attention_mask = ( + attention_mask[None, :, :, None, None] + .expand((num_hidden_layers, batch_size, sequence_length, top_k, num_experts)) + .reshape(-1, top_k, num_experts) + .to(compute_device) + ) + + # Compute the percentage of tokens routed to each experts + tokens_per_expert = torch.sum(expert_mask.float() * expert_attention_mask, dim=0) / torch.sum( + expert_attention_mask, dim=0 + ) + + # Compute the mask that masks all padding tokens as 0 with the same shape of tokens_per_expert + router_per_expert_attention_mask = ( + attention_mask[None, :, :, None] + .expand((num_hidden_layers, batch_size, sequence_length, num_experts)) + .reshape(-1, num_experts) + .to(compute_device) + ) + + # Compute the average probability of routing to these experts + router_prob_per_expert = torch.sum(routing_weights * router_per_expert_attention_mask, dim=0) / torch.sum( + router_per_expert_attention_mask, dim=0 + ) + + overall_loss = torch.sum(tokens_per_expert * router_prob_per_expert.unsqueeze(0)) + return overall_loss * num_experts + + +# Copied from transformers.models.granite.modeling_granite.GraniteRMSNorm with Granite->GraniteMoe +class GraniteMoeRMSNorm(nn.Module): + def __init__(self, hidden_size, eps=1e-6): + """ + GraniteMoeRMSNorm is equivalent to T5LayerNorm + """ + super().__init__() + self.weight = nn.Parameter(torch.ones(hidden_size)) + self.variance_epsilon = eps + + def forward(self, hidden_states): + input_dtype = hidden_states.dtype + hidden_states = hidden_states.to(torch.float32) + variance = hidden_states.pow(2).mean(-1, keepdim=True) + hidden_states = hidden_states * torch.rsqrt(variance + self.variance_epsilon) + return self.weight * hidden_states.to(input_dtype) + + def extra_repr(self): + return f"{tuple(self.weight.shape)}, eps={self.variance_epsilon}" + + +ALL_LAYERNORM_LAYERS.append(GraniteMoeRMSNorm) + + +# Copied from transformers.models.granite.modeling_granite.GraniteRotaryEmbedding with Granite->GraniteMoe +class GraniteMoeRotaryEmbedding(nn.Module): + def __init__(self, config: GraniteMoeConfig): + super().__init__() + # TODO (joao): remove the `if` below, only used for BC + self.rope_kwargs = {} + if config.rope_scaling is not None: + self.rope_type = config.rope_scaling.get("rope_type", config.rope_scaling.get("type")) + else: + self.rope_type = "default" + self.max_seq_len_cached = config.max_position_embeddings + self.original_max_seq_len = config.max_position_embeddings + + self.config = config + self.rope_init_fn = ROPE_INIT_FUNCTIONS[self.rope_type] + + inv_freq, self.attention_scaling = self.rope_init_fn(self.config, device=None, **self.rope_kwargs) + self.register_buffer("inv_freq", inv_freq, persistent=False) + self.original_inv_freq = self.inv_freq + + def _dynamic_frequency_update(self, position_ids, device): + """ + dynamic RoPE layers should recompute `inv_freq` in the following situations: + 1 - growing beyond the cached sequence length (allow scaling) + 2 - the current sequence length is in the original scale (avoid losing precision with small sequences) + """ + seq_len = torch.max(position_ids) + 1 + if seq_len > self.max_seq_len_cached: # growth + inv_freq, self.attention_scaling = self.rope_init_fn( + self.config, device, seq_len=seq_len, **self.rope_kwargs + ) + self.register_buffer("inv_freq", inv_freq, persistent=False) # TODO joao: may break with compilation + self.max_seq_len_cached = seq_len + + if seq_len < self.original_max_seq_len and self.max_seq_len_cached > self.original_max_seq_len: # reset + self.register_buffer("inv_freq", self.original_inv_freq, persistent=False) + self.max_seq_len_cached = self.original_max_seq_len + + @torch.no_grad() + def forward(self, x, position_ids): + if "dynamic" in self.rope_type: + self._dynamic_frequency_update(position_ids, device=x.device) + + # Core RoPE block + inv_freq_expanded = self.inv_freq[None, :, None].float().expand(position_ids.shape[0], -1, 1) + position_ids_expanded = position_ids[:, None, :].float() + # Force float32 (see https://github.com/huggingface/transformers/pull/29285) + device_type = x.device.type + device_type = device_type if isinstance(device_type, str) and device_type != "mps" else "cpu" + with torch.autocast(device_type=device_type, enabled=False): + freqs = (inv_freq_expanded.float() @ position_ids_expanded.float()).transpose(1, 2) + emb = torch.cat((freqs, freqs), dim=-1) + cos = emb.cos() + sin = emb.sin() + + # Advanced RoPE types (e.g. yarn) apply a post-processing scaling factor, equivalent to scaling attention + cos = cos * self.attention_scaling + sin = sin * self.attention_scaling + + return cos.to(dtype=x.dtype), sin.to(dtype=x.dtype) + + +# Copied from transformers.models.granite.modeling_granite.rotate_half with Granite->GraniteMoe +def rotate_half(x): + """Rotates half the hidden dims of the input.""" + x1 = x[..., : x.shape[-1] // 2] + x2 = x[..., x.shape[-1] // 2 :] + return torch.cat((-x2, x1), dim=-1) + + +# Copied from transformers.models.granite.modeling_granite.apply_rotary_pos_emb with Granite->GraniteMoe +def apply_rotary_pos_emb(q, k, cos, sin, position_ids=None, unsqueeze_dim=1): + """Applies Rotary Position Embedding to the query and key tensors. + + Args: + q (`torch.Tensor`): The query tensor. + k (`torch.Tensor`): The key tensor. + cos (`torch.Tensor`): The cosine part of the rotary embedding. + sin (`torch.Tensor`): The sine part of the rotary embedding. + position_ids (`torch.Tensor`, *optional*): + Deprecated and unused. + unsqueeze_dim (`int`, *optional*, defaults to 1): + The 'unsqueeze_dim' argument specifies the dimension along which to unsqueeze cos[position_ids] and + sin[position_ids] so that they can be properly broadcasted to the dimensions of q and k. For example, note + that cos[position_ids] and sin[position_ids] have the shape [batch_size, seq_len, head_dim]. Then, if q and + k have the shape [batch_size, heads, seq_len, head_dim], then setting unsqueeze_dim=1 makes + cos[position_ids] and sin[position_ids] broadcastable to the shapes of q and k. Similarly, if q and k have + the shape [batch_size, seq_len, heads, head_dim], then set unsqueeze_dim=2. + Returns: + `tuple(torch.Tensor)` comprising of the query and key tensors rotated using the Rotary Position Embedding. + """ + cos = cos.unsqueeze(unsqueeze_dim) + sin = sin.unsqueeze(unsqueeze_dim) + q_embed = (q * cos) + (rotate_half(q) * sin) + k_embed = (k * cos) + (rotate_half(k) * sin) + return q_embed, k_embed + + +# Copied from transformers.models.jetmoe.modeling_jetmoe.JetMoeParallelExperts with JetMoe->GraniteMoe +class GraniteMoeParallelExperts(nn.Module): + def __init__(self, num_experts: int, input_size: int, output_size: int) -> None: + """ + Initialize the GraniteMoeParallelExperts module. + The experts weights are stored in [num_experts, output_size, input_size] format. Such that it's comptible with + many MoE libraries, such as [Megablock](https://github.com/databricks/megablocks) and + [ScatterMoE](https://github.com/shawntan/scattermoe), as well as the + [MoE kernel](https://github.com/vllm-project/vllm/blob/main/vllm/model_executor/layers/fused_moe/fused_moe.py) + used in vllm. + Args: + num_experts (int): + Number of experts. + input_size (int): + Size of the input. + output_size (int): + Size of the output. + """ + super().__init__() + self.weight = nn.Parameter(torch.empty(num_experts, output_size, input_size)) + self.num_experts = num_experts + self.input_size = input_size + self.output_size = output_size + + def forward(self, inputs, expert_size): + """ + Forward pass of the GraniteMoeParallelExperts module. + Args: + inputs (Tensor): + Input tensor. + expert_size: + Expert size information. + Returns: + Tensor: Output tensor. + """ + input_list = inputs.split(expert_size, dim=0) + output_list = [] + for i in range(self.num_experts): + output_list.append(F.linear(input_list[i], self.weight[i])) + results = torch.cat(output_list, dim=0) + return results + + +# Copied from transformers.models.jetmoe.modeling_jetmoe.JetMoeTopKGating with JetMoe->GraniteMoe +class GraniteMoeTopKGating(nn.Module): + def __init__(self, input_size: int, num_experts: int, top_k: int): + """ + Initialize the top-k gating mechanism. + Args: + input_size (`int`): + Size of the input. + num_experts (`int`): + Number of experts. + top_k (`int`): + Number of top experts to select. + """ + super().__init__() + + self.num_experts = num_experts + self.input_size = input_size + self.top_k = top_k + + self.layer = nn.Linear(input_size, num_experts, bias=False) + + def forward(self, hidden_states): + # compute the top_k routing decision + logits = self.layer(hidden_states).float() # [batch_size x seq_len, num_experts] + top_k_logits, top_k_indices = logits.topk(self.top_k, dim=1) # [num_tokens, top_k] + top_k_gates = torch.softmax(top_k_logits, dim=1).type_as(hidden_states) # [num_tokens, top_k] + + # compute number of input given to each expert + zeros = torch.zeros( + [top_k_gates.size(0), self.num_experts], dtype=top_k_gates.dtype, device=top_k_gates.device + ) # [num_tokens, num_experts] + gates = zeros.scatter(1, top_k_indices, 1) # [num_tokens, num_experts] + expert_size = gates.long().sum(0) # [num_experts,] + expert_size = expert_size.tolist() + + # sort and group input tokens according to expert assignment + top_k_experts = top_k_indices.flatten() # [num_tokens * top_k] + _, index_sorted_experts = top_k_experts.sort(0) # [num_tokens * top_k] + batch_index = index_sorted_experts.div(self.top_k, rounding_mode="trunc") # [num_tokens * top_k] + + # gather the gate values for grouped input tokens + top_k_gates = top_k_gates.flatten() # [num_tokens * top_k] + batch_gates = top_k_gates[index_sorted_experts] # [num_tokens * top_k] + + return index_sorted_experts, batch_index, batch_gates, expert_size, logits + + +class GraniteMoeMoE(nn.Module): + """ + A Sparsely gated mixture of experts layer with 1-layer Feed-Forward networks as experts. + + Args: + config: + Configuration object with model hyperparameters. + """ + + def __init__(self, config: GraniteMoeConfig): + super(GraniteMoeMoE, self).__init__() + + self.input_size = config.hidden_size + self.hidden_size = config.intermediate_size + self.activation = ACT2FN[config.hidden_act] + self.input_linear = GraniteMoeParallelExperts(config.num_local_experts, self.input_size, self.hidden_size * 2) + self.output_linear = GraniteMoeParallelExperts(config.num_local_experts, self.hidden_size, self.input_size) + + self.router = GraniteMoeTopKGating( + input_size=self.input_size, + num_experts=config.num_local_experts, + top_k=config.num_experts_per_tok, + ) + + def forward(self, layer_input): + """ + Forward pass of the mixture of experts layer. + + Args: + layer_input (Tensor): + Input tensor. + + Returns: + Tensor: + Output tensor. + Tensor: + Router logits. + """ + bsz, length, emb_size = layer_input.size() + layer_input = layer_input.reshape(-1, emb_size) + _, batch_index, batch_gates, expert_size, router_logits = self.router(layer_input) + + expert_inputs = layer_input[batch_index] + hidden_states = self.input_linear(expert_inputs, expert_size) + chunked_hidden_states = hidden_states.chunk(2, dim=-1) + hidden_states = self.activation(chunked_hidden_states[0]) * chunked_hidden_states[1] + expert_outputs = self.output_linear(hidden_states, expert_size) + + expert_outputs = expert_outputs * batch_gates[:, None] + + zeros = torch.zeros((bsz * length, self.input_size), dtype=expert_outputs.dtype, device=expert_outputs.device) + layer_output = zeros.index_add(0, batch_index, expert_outputs) + layer_output = layer_output.view(bsz, length, self.input_size) + return layer_output, router_logits + + +# Copied from transformers.models.granite.modeling_granite.repeat_kv with Granite->GraniteMoe +def repeat_kv(hidden_states: torch.Tensor, n_rep: int) -> torch.Tensor: + """ + This is the equivalent of torch.repeat_interleave(x, dim=1, repeats=n_rep). The hidden states go from (batch, + num_key_value_heads, seqlen, head_dim) to (batch, num_attention_heads, seqlen, head_dim) + """ + batch, num_key_value_heads, slen, head_dim = hidden_states.shape + if n_rep == 1: + return hidden_states + hidden_states = hidden_states[:, :, None, :, :].expand(batch, num_key_value_heads, n_rep, slen, head_dim) + return hidden_states.reshape(batch, num_key_value_heads * n_rep, slen, head_dim) + + +# Copied from transformers.models.granite.modeling_granite.GraniteAttention with Granite->GraniteMoe +class GraniteMoeAttention(nn.Module): + """Multi-headed attention from 'Attention Is All You Need' paper""" + + def __init__(self, config: GraniteMoeConfig, layer_idx: Optional[int] = None): + super().__init__() + self.config = config + self.layer_idx = layer_idx + if layer_idx is None: + logger.warning_once( + f"Instantiating {self.__class__.__name__} without passing a `layer_idx` is not recommended and will " + "lead to errors during the forward call if caching is used. Please make sure to provide a `layer_idx` " + "when creating this class." + ) + + self.attention_dropout = config.attention_dropout + self.hidden_size = config.hidden_size + self.num_heads = config.num_attention_heads + self.head_dim = self.hidden_size // self.num_heads + self.num_key_value_heads = config.num_key_value_heads + self.num_key_value_groups = self.num_heads // self.num_key_value_heads + self.is_causal = True + + self.scaling = config.attention_multiplier + + if (self.head_dim * self.num_heads) != self.hidden_size: + raise ValueError( + f"hidden_size must be divisible by num_heads (got `hidden_size`: {self.hidden_size}" + f" and `num_heads`: {self.num_heads})." + ) + + self.q_proj = nn.Linear(self.hidden_size, self.num_heads * self.head_dim, bias=config.attention_bias) + self.k_proj = nn.Linear(self.hidden_size, self.num_key_value_heads * self.head_dim, bias=config.attention_bias) + self.v_proj = nn.Linear(self.hidden_size, self.num_key_value_heads * self.head_dim, bias=config.attention_bias) + self.o_proj = nn.Linear(self.hidden_size, self.hidden_size, bias=config.attention_bias) + + def forward( + self, + hidden_states: torch.Tensor, + attention_mask: Optional[torch.Tensor] = None, + position_ids: Optional[torch.LongTensor] = None, + past_key_value: Optional[Cache] = None, + output_attentions: bool = False, + use_cache: bool = False, + cache_position: Optional[torch.LongTensor] = None, + position_embeddings: Optional[Tuple[torch.Tensor, torch.Tensor]] = None, # will become mandatory in v4.45 + **kwargs, + ) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]: + bsz, q_len, _ = hidden_states.size() + + query_states = self.q_proj(hidden_states) + key_states = self.k_proj(hidden_states) + value_states = self.v_proj(hidden_states) + + query_states = query_states.view(bsz, q_len, self.num_heads, self.head_dim).transpose(1, 2) + key_states = key_states.view(bsz, q_len, self.num_key_value_heads, self.head_dim).transpose(1, 2) + value_states = value_states.view(bsz, q_len, self.num_key_value_heads, self.head_dim).transpose(1, 2) + + cos, sin = position_embeddings + query_states, key_states = apply_rotary_pos_emb(query_states, key_states, cos, sin) + + if past_key_value is not None: + # sin and cos are specific to RoPE models; cache_position needed for the static cache + cache_kwargs = {"sin": sin, "cos": cos, "cache_position": cache_position} + key_states, value_states = past_key_value.update(key_states, value_states, self.layer_idx, cache_kwargs) + + key_states = repeat_kv(key_states, self.num_key_value_groups) + value_states = repeat_kv(value_states, self.num_key_value_groups) + + attn_weights = torch.matmul(query_states, key_states.transpose(2, 3)) * self.scaling + + if attention_mask is not None: # no matter the length, we just slice it + causal_mask = attention_mask[:, :, :, : key_states.shape[-2]] + attn_weights = attn_weights + causal_mask + + # upcast attention to fp32 + attn_weights = nn.functional.softmax(attn_weights, dim=-1, dtype=torch.float32).to(query_states.dtype) + attn_weights = nn.functional.dropout(attn_weights, p=self.attention_dropout, training=self.training) + attn_output = torch.matmul(attn_weights, value_states) + + if attn_output.size() != (bsz, self.num_heads, q_len, self.head_dim): + raise ValueError( + f"`attn_output` should be of size {(bsz, self.num_heads, q_len, self.head_dim)}, but is" + f" {attn_output.size()}" + ) + + attn_output = attn_output.transpose(1, 2).contiguous() + + attn_output = attn_output.view(bsz, q_len, -1) + attn_output = self.o_proj(attn_output) + + if not output_attentions: + attn_weights = None + + return attn_output, attn_weights, past_key_value + + +# Copied from transformers.models.granite.modeling_granite.GraniteFlashAttention2 with Granite->GraniteMoe +class GraniteMoeFlashAttention2(GraniteMoeAttention): + """ + GraniteMoe flash attention module. This module inherits from `GraniteMoeAttention` as the weights of the module stays + untouched. The only required change would be on the forward pass where it needs to correctly call the public API of + flash attention and deal with padding tokens in case the input contains any of them. + """ + + def __init__(self, *args, **kwargs): + super().__init__(*args, **kwargs) + + # TODO: Should be removed once Flash Attention for RoCm is bumped to 2.1. + # flash_attn<2.1 generates top-left aligned causal mask, while what is needed here is bottom-right alignement, that was made default for flash_attn>=2.1. This attribute is used to handle this difference. Reference: https://github.com/Dao-AILab/flash-attention/releases/tag/v2.1.0. + # Beware that with flash_attn<2.1, using q_seqlen != k_seqlen (except for the case q_seqlen == 1) produces a wrong mask (top-left). + self._flash_attn_uses_top_left_mask = not is_flash_attn_greater_or_equal_2_10() + + def forward( + self, + hidden_states: torch.Tensor, + attention_mask: Optional[torch.LongTensor] = None, + position_ids: Optional[torch.LongTensor] = None, + past_key_value: Optional[Cache] = None, + output_attentions: bool = False, + use_cache: bool = False, + cache_position: Optional[torch.LongTensor] = None, + position_embeddings: Optional[Tuple[torch.Tensor, torch.Tensor]] = None, # will become mandatory in v4.45 + ) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]: + output_attentions = False + + bsz, q_len, _ = hidden_states.size() + + query_states = self.q_proj(hidden_states) + key_states = self.k_proj(hidden_states) + value_states = self.v_proj(hidden_states) + + # Flash attention requires the input to have the shape + # batch_size x seq_length x head_dim x hidden_dim + # therefore we just need to keep the original shape + query_states = query_states.view(bsz, q_len, self.num_heads, self.head_dim).transpose(1, 2) + key_states = key_states.view(bsz, q_len, self.num_key_value_heads, self.head_dim).transpose(1, 2) + value_states = value_states.view(bsz, q_len, self.num_key_value_heads, self.head_dim).transpose(1, 2) + + cos, sin = position_embeddings + query_states, key_states = apply_rotary_pos_emb(query_states, key_states, cos, sin) + + if past_key_value is not None: + # sin and cos are specific to RoPE models; cache_position needed for the static cache + cache_kwargs = {"sin": sin, "cos": cos, "cache_position": cache_position} + key_states, value_states = past_key_value.update(key_states, value_states, self.layer_idx, cache_kwargs) + + # TODO: These transpose are quite inefficient but Flash Attention requires the layout [batch_size, sequence_length, num_heads, head_dim]. We would need to refactor the KV cache + # to be able to avoid many of these transpose/reshape/view. + query_states = query_states.transpose(1, 2) + key_states = key_states.transpose(1, 2) + value_states = value_states.transpose(1, 2) + + dropout_rate = self.attention_dropout if self.training else 0.0 + + # In PEFT, usually we cast the layer norms in float32 for training stability reasons + # therefore the input hidden states gets silently casted in float32. Hence, we need + # cast them back in the correct dtype just to be sure everything works as expected. + # This might slowdown training & inference so it is recommended to not cast the LayerNorms + # in fp32. (GraniteMoeRMSNorm handles it correctly) + + input_dtype = query_states.dtype + if input_dtype == torch.float32: + if torch.is_autocast_enabled(): + target_dtype = torch.get_autocast_gpu_dtype() + # Handle the case where the model is quantized + elif hasattr(self.config, "_pre_quantization_dtype"): + target_dtype = self.config._pre_quantization_dtype + else: + target_dtype = self.q_proj.weight.dtype + + logger.warning_once( + f"The input hidden states seems to be silently casted in float32, this might be related to" + f" the fact you have upcasted embedding or layer norm layers in float32. We will cast back the input in" + f" {target_dtype}." + ) + + query_states = query_states.to(target_dtype) + key_states = key_states.to(target_dtype) + value_states = value_states.to(target_dtype) + + attn_output = _flash_attention_forward( + query_states, + key_states, + value_states, + attention_mask, + q_len, + position_ids=position_ids, + dropout=dropout_rate, + softmax_scale=self.scaling, + sliding_window=getattr(self, "sliding_window", None), + use_top_left_mask=self._flash_attn_uses_top_left_mask, + is_causal=self.is_causal, + ) + + attn_output = attn_output.reshape(bsz, q_len, -1).contiguous() + attn_output = self.o_proj(attn_output) + + if not output_attentions: + attn_weights = None + + return attn_output, attn_weights, past_key_value + + +# Copied from transformers.models.granite.modeling_granite.GraniteSdpaAttention with Granite->GraniteMoe +class GraniteMoeSdpaAttention(GraniteMoeAttention): + """ + GraniteMoe attention module using torch.nn.functional.scaled_dot_product_attention. This module inherits from + `GraniteMoeAttention` as the weights of the module stays untouched. The only changes are on the forward pass to adapt to + SDPA API. + """ + + # Adapted from GraniteMoeAttention.forward + def forward( + self, + hidden_states: torch.Tensor, + attention_mask: Optional[torch.Tensor] = None, + position_ids: Optional[torch.LongTensor] = None, + past_key_value: Optional[Cache] = None, + output_attentions: bool = False, + use_cache: bool = False, + cache_position: Optional[torch.LongTensor] = None, + position_embeddings: Optional[Tuple[torch.Tensor, torch.Tensor]] = None, # will become mandatory in v4.45 + **kwargs, + ) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]: + if output_attentions: + # TODO: Improve this warning with e.g. `model.config.attn_implementation = "manual"` once this is implemented. + logger.warning_once( + "GraniteMoeModel is using GraniteMoeSdpaAttention, but `torch.nn.functional.scaled_dot_product_attention` does not support `output_attentions=True`. Falling back to the manual attention implementation, " + 'but specifying the manual implementation will be required from Transformers version v5.0.0 onwards. This warning can be removed using the argument `attn_implementation="eager"` when loading the model.' + ) + return super().forward( + hidden_states=hidden_states, + attention_mask=attention_mask, + position_ids=position_ids, + past_key_value=past_key_value, + output_attentions=output_attentions, + use_cache=use_cache, + cache_position=cache_position, + position_embeddings=position_embeddings, + ) + + bsz, q_len, _ = hidden_states.size() + + query_states = self.q_proj(hidden_states) + key_states = self.k_proj(hidden_states) + value_states = self.v_proj(hidden_states) + + query_states = query_states.view(bsz, q_len, self.num_heads, self.head_dim).transpose(1, 2) + key_states = key_states.view(bsz, q_len, self.num_key_value_heads, self.head_dim).transpose(1, 2) + value_states = value_states.view(bsz, q_len, self.num_key_value_heads, self.head_dim).transpose(1, 2) + + cos, sin = position_embeddings + query_states, key_states = apply_rotary_pos_emb(query_states, key_states, cos, sin) + + if past_key_value is not None: + # sin and cos are specific to RoPE models; cache_position needed for the static cache + cache_kwargs = {"sin": sin, "cos": cos, "cache_position": cache_position} + key_states, value_states = past_key_value.update(key_states, value_states, self.layer_idx, cache_kwargs) + + key_states = repeat_kv(key_states, self.num_key_value_groups) + value_states = repeat_kv(value_states, self.num_key_value_groups) + + causal_mask = attention_mask + if attention_mask is not None: + causal_mask = causal_mask[:, :, :, : key_states.shape[-2]] + + # SDPA with memory-efficient backend is currently (torch==2.1.2) bugged with non-contiguous inputs with custom attn_mask, + # Reference: https://github.com/pytorch/pytorch/issues/112577. + if query_states.device.type == "cuda" and causal_mask is not None: + query_states = query_states.contiguous() + key_states = key_states.contiguous() + value_states = value_states.contiguous() + + # We dispatch to SDPA's Flash Attention or Efficient kernels via this `is_causal` if statement instead of an inline conditional assignment + # in SDPA to support both torch.compile's dynamic shapes and full graph options. An inline conditional prevents dynamic shapes from compiling. + is_causal = True if causal_mask is None and q_len > 1 else False + + attn_output = torch.nn.functional.scaled_dot_product_attention( + query_states, + key_states, + value_states, + attn_mask=causal_mask, + dropout_p=self.attention_dropout if self.training else 0.0, + is_causal=is_causal, + scale=self.scaling, + ) + + attn_output = attn_output.transpose(1, 2).contiguous() + attn_output = attn_output.view(bsz, q_len, -1) + + attn_output = self.o_proj(attn_output) + + return attn_output, None, past_key_value + + +GRANITEMOE_ATTENTION_CLASSES = { + "eager": GraniteMoeAttention, + "flash_attention_2": GraniteMoeFlashAttention2, + "sdpa": GraniteMoeSdpaAttention, +} + + +class GraniteMoeDecoderLayer(nn.Module): + def __init__(self, config: GraniteMoeConfig, layer_idx: int): + super().__init__() + self.hidden_size = config.hidden_size + + self.self_attn = GRANITEMOE_ATTENTION_CLASSES[config._attn_implementation](config=config, layer_idx=layer_idx) + + self.block_sparse_moe = GraniteMoeMoE(config) + self.input_layernorm = GraniteMoeRMSNorm(config.hidden_size, eps=config.rms_norm_eps) + self.post_attention_layernorm = GraniteMoeRMSNorm(config.hidden_size, eps=config.rms_norm_eps) + + self.residual_multiplier = config.residual_multiplier + + def forward( + self, + hidden_states: torch.Tensor, + attention_mask: Optional[torch.Tensor] = None, + position_ids: Optional[torch.LongTensor] = None, + past_key_value: Optional[Cache] = None, + output_attentions: Optional[bool] = False, + use_cache: Optional[bool] = False, + cache_position: Optional[torch.LongTensor] = None, + output_router_logits: Optional[bool] = False, + position_embeddings: Optional[Tuple[torch.Tensor, torch.Tensor]] = None, # will become mandatory in v4.45 + **kwargs, + ) -> Tuple[torch.FloatTensor, Optional[Tuple[torch.FloatTensor, torch.FloatTensor]]]: + """ + Args: + hidden_states (`torch.FloatTensor`): input to the layer of shape `(batch, seq_len, embed_dim)` + attention_mask (`torch.FloatTensor`, *optional*): + attention mask of size `(batch_size, sequence_length)` if flash attention is used or `(batch_size, 1, + query_sequence_length, key_sequence_length)` if default attention is used. + output_attentions (`bool`, *optional*): + Whether or not to return the attentions tensors of all attention layers. See `attentions` under + returned tensors for more detail. + use_cache (`bool`, *optional*): + If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding + (see `past_key_values`). + past_key_value (`Tuple(torch.FloatTensor)`, *optional*): cached past key and value projection states + cache_position (`torch.LongTensor` of shape `(sequence_length)`, *optional*): + Indices depicting the position of the input sequence tokens in the sequence + output_router_logits (`bool`, *optional*): + Whether or not to return the logits of all the routers. They are useful for computing the router loss, and + should not be returned during inference. + position_embeddings (`Tuple[torch.FloatTensor, torch.FloatTensor]`, *optional*): + Tuple containing the cosine and sine positional embeddings of shape `(batch_size, seq_len, head_dim)`, + with `head_dim` being the embedding dimension of each attention head. + kwargs (`dict`, *optional*): + Arbitrary kwargs to be ignored, used for FSDP and other methods that injects code + into the model + """ + residual = hidden_states + + hidden_states = self.input_layernorm(hidden_states) + + # Self Attention + hidden_states, self_attn_weights, present_key_value = self.self_attn( + hidden_states=hidden_states, + attention_mask=attention_mask, + position_ids=position_ids, + past_key_value=past_key_value, + output_attentions=output_attentions, + use_cache=use_cache, + cache_position=cache_position, + position_embeddings=position_embeddings, + **kwargs, + ) + + hidden_states = residual + hidden_states * self.residual_multiplier + + # Fully Connected + residual = hidden_states + hidden_states = self.post_attention_layernorm(hidden_states) + hidden_states, router_logits = self.block_sparse_moe(hidden_states) + + hidden_states = residual + hidden_states * self.residual_multiplier + + outputs = (hidden_states,) + + if output_attentions: + outputs += (self_attn_weights,) + + if use_cache: + outputs += (present_key_value,) + + if output_router_logits: + outputs += (router_logits,) + + return outputs + + +GRANITEMOE_START_DOCSTRING = r""" + This model inherits from [`PreTrainedModel`]. Check the superclass documentation for the generic methods the + library implements for all its model (such as downloading or saving, resizing the input embeddings, pruning heads + etc.) + + This model is also a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) subclass. + Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage + and behavior. + + Parameters: + config ([`GraniteMoeConfig`]): + Model configuration class with all the parameters of the model. Initializing with a config file does not + load the weights associated with the model, only the configuration. Check out the + [`~PreTrainedModel.from_pretrained`] method to load the model weights. +""" + + +@add_start_docstrings( + "The bare GraniteMoe Model outputting raw hidden-states without any specific head on top.", + GRANITEMOE_START_DOCSTRING, +) +class GraniteMoePreTrainedModel(PreTrainedModel): + config_class = GraniteMoeConfig + base_model_prefix = "model" + supports_gradient_checkpointing = True + _no_split_modules = ["GraniteMoeDecoderLayer"] + _skip_keys_device_placement = ["past_key_values"] + _supports_flash_attn_2 = True + _supports_sdpa = True + _supports_cache_class = True + _supports_quantized_cache = True + _supports_static_cache = True + + def _init_weights(self, module): + std = self.config.initializer_range + if isinstance(module, nn.Linear): + module.weight.data.normal_(mean=0.0, std=std) + if module.bias is not None: + module.bias.data.zero_() + elif isinstance(module, nn.Embedding): + module.weight.data.normal_(mean=0.0, std=std) + if module.padding_idx is not None: + module.weight.data[module.padding_idx].zero_() + elif isinstance(module, nn.LayerNorm): + module.bias.data.zero_() + module.weight.data.fill_(1.0) + elif isinstance(module, GraniteMoeParallelExperts): + module.weight.data.normal_(mean=0.0, std=self.config.initializer_range) + + +GRANITEMOE_INPUTS_DOCSTRING = r""" + Args: + input_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`): + Indices of input sequence tokens in the vocabulary. Padding will be ignored by default should you provide + it. + + Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and + [`PreTrainedTokenizer.__call__`] for details. + + [What are input IDs?](../glossary#input-ids) + attention_mask (`torch.Tensor` of shape `(batch_size, sequence_length)`, *optional*): + Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`: + + - 1 for tokens that are **not masked**, + - 0 for tokens that are **masked**. + + [What are attention masks?](../glossary#attention-mask) + + Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and + [`PreTrainedTokenizer.__call__`] for details. + + If `past_key_values` is used, optionally only the last `input_ids` have to be input (see + `past_key_values`). + + If you want to change padding behavior, you should read [`modeling_opt._prepare_decoder_attention_mask`] + and modify to your needs. See diagram 1 in [the paper](https://arxiv.org/abs/1910.13461) for more + information on the default strategy. + + - 1 indicates the head is **not masked**, + - 0 indicates the head is **masked**. + position_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*): + Indices of positions of each input sequence tokens in the position embeddings. Selected in the range `[0, + config.n_positions - 1]`. + + [What are position IDs?](../glossary#position-ids) + past_key_values (`Cache` or `tuple(tuple(torch.FloatTensor))`, *optional*): + Pre-computed hidden-states (key and values in the self-attention blocks and in the cross-attention + blocks) that can be used to speed up sequential decoding. This typically consists in the `past_key_values` + returned by the model at a previous stage of decoding, when `use_cache=True` or `config.use_cache=True`. + + Two formats are allowed: + - a [`~cache_utils.Cache`] instance; + - Tuple of `tuple(torch.FloatTensor)` of length `config.n_layers`, with each tuple having 2 tensors of + shape `(batch_size, num_heads, sequence_length, embed_size_per_head)`). This is also known as the legacy + cache format. + + The model will output the same cache format that is fed as input. If no `past_key_values` are passed, the + legacy cache format will be returned. + + If `past_key_values` are used, the user can optionally input only the last `input_ids` (those that don't + have their past key value states given to this model) of shape `(batch_size, 1)` instead of all `input_ids` + of shape `(batch_size, sequence_length)`. + inputs_embeds (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*): + Optionally, instead of passing `input_ids` you can choose to directly pass an embedded representation. This + is useful if you want more control over how to convert `input_ids` indices into associated vectors than the + model's internal embedding lookup matrix. + use_cache (`bool`, *optional*): + If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding (see + `past_key_values`). + output_attentions (`bool`, *optional*): + Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned + tensors for more detail. + output_hidden_states (`bool`, *optional*): + Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for + more detail. + return_dict (`bool`, *optional*): + Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple. + cache_position (`torch.LongTensor` of shape `(sequence_length)`, *optional*): + Indices depicting the position of the input sequence tokens in the sequence. Contrarily to `position_ids`, + this tensor is not affected by padding. It is used to update the cache in the correct position and to infer + the complete sequence length. +""" + + +@add_start_docstrings( + "The bare GraniteMoe Model outputting raw hidden-states without any specific head on top.", + GRANITEMOE_START_DOCSTRING, +) +class GraniteMoeModel(GraniteMoePreTrainedModel): + """ + Transformer decoder consisting of *config.num_hidden_layers* layers. Each layer is a [`GraniteMoeDecoderLayer`] + + Args: + config: GraniteMoeConfig + """ + + def __init__(self, config: GraniteMoeConfig): + super().__init__(config) + self.padding_idx = config.pad_token_id + self.vocab_size = config.vocab_size + + self.embed_tokens = nn.Embedding(config.vocab_size, config.hidden_size, self.padding_idx) + self.layers = nn.ModuleList( + [GraniteMoeDecoderLayer(config, layer_idx) for layer_idx in range(config.num_hidden_layers)] + ) + self.norm = GraniteMoeRMSNorm(config.hidden_size, eps=config.rms_norm_eps) + self.gradient_checkpointing = False + + self.embedding_multiplier = config.embedding_multiplier + self.hidden_size = config.hidden_size + self.num_heads = config.num_attention_heads + self.head_dim = self.hidden_size // self.num_heads + self.max_position_embeddings = config.max_position_embeddings + self.rope_theta = config.rope_theta + + # rope + self.rotary_emb = GraniteMoeRotaryEmbedding(config) + + # Initialize weights and apply final processing + self.post_init() + + def get_input_embeddings(self): + return self.embed_tokens + + def set_input_embeddings(self, value): + self.embed_tokens = value + + @add_start_docstrings_to_model_forward(GRANITEMOE_INPUTS_DOCSTRING) + def forward( + self, + input_ids: torch.LongTensor = None, + attention_mask: Optional[torch.Tensor] = None, + position_ids: Optional[torch.LongTensor] = None, + past_key_values: Optional[Union[Cache, List[torch.FloatTensor]]] = None, + inputs_embeds: Optional[torch.FloatTensor] = None, + use_cache: Optional[bool] = None, + output_attentions: Optional[bool] = None, + output_hidden_states: Optional[bool] = None, + output_router_logits: Optional[bool] = None, + return_dict: Optional[bool] = None, + cache_position: Optional[torch.LongTensor] = None, + ) -> Union[Tuple, BaseModelOutputWithPast]: + output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions + output_hidden_states = ( + output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states + ) + use_cache = use_cache if use_cache is not None else self.config.use_cache + return_dict = return_dict if return_dict is not None else self.config.use_return_dict + + if (input_ids is None) ^ (inputs_embeds is not None): + raise ValueError( + "You cannot specify both input_ids and inputs_embeds at the same time, and must specify either one" + ) + + if self.gradient_checkpointing and self.training and use_cache: + logger.warning_once( + "`use_cache=True` is incompatible with gradient checkpointing. Setting `use_cache=False`." + ) + use_cache = False + + if inputs_embeds is None: + inputs_embeds = self.embed_tokens(input_ids) + + inputs_embeds = inputs_embeds * self.embedding_multiplier + + return_legacy_cache = False + if use_cache and not isinstance(past_key_values, Cache): # kept for BC (non `Cache` `past_key_values` inputs) + return_legacy_cache = True + past_key_values = DynamicCache.from_legacy_cache(past_key_values) + logger.warning_once( + "We detected that you are passing `past_key_values` as a tuple and this is deprecated and will be removed in v4.43. " + "Please use an appropriate `Cache` class (https://huggingface.co/docs/transformers/v4.41.3/en/internal/generation_utils#transformers.Cache)" + ) + + if cache_position is None: + past_seen_tokens = past_key_values.get_seq_length() if past_key_values is not None else 0 + cache_position = torch.arange( + past_seen_tokens, past_seen_tokens + inputs_embeds.shape[1], device=inputs_embeds.device + ) + if position_ids is None: + position_ids = cache_position.unsqueeze(0) + + causal_mask = self._update_causal_mask( + attention_mask, inputs_embeds, cache_position, past_key_values, output_attentions + ) + + # embed positions + hidden_states = inputs_embeds + + # create position embeddings to be shared across the decoder layers + position_embeddings = self.rotary_emb(hidden_states, position_ids) + + # decoder layers + all_hidden_states = () if output_hidden_states else None + all_self_attns = () if output_attentions else None + all_router_logits = () if output_router_logits else None + next_decoder_cache = None + + for decoder_layer in self.layers: + if output_hidden_states: + all_hidden_states += (hidden_states,) + + if self.gradient_checkpointing and self.training: + layer_outputs = self._gradient_checkpointing_func( + decoder_layer.__call__, + hidden_states, + causal_mask, + position_ids, + past_key_values, + output_attentions, + use_cache, + cache_position, + output_router_logits, + position_embeddings, + ) + else: + layer_outputs = decoder_layer( + hidden_states, + attention_mask=causal_mask, + position_ids=position_ids, + past_key_value=past_key_values, + output_attentions=output_attentions, + use_cache=use_cache, + cache_position=cache_position, + output_router_logits=output_router_logits, + position_embeddings=position_embeddings, + ) + + hidden_states = layer_outputs[0] + + if use_cache: + next_decoder_cache = layer_outputs[2 if output_attentions else 1] + + if output_attentions: + all_self_attns += (layer_outputs[1],) + + if output_router_logits: + all_router_logits += (layer_outputs[-1],) + + hidden_states = self.norm(hidden_states) + + # add hidden states from the last decoder layer + if output_hidden_states: + all_hidden_states += (hidden_states,) + + next_cache = next_decoder_cache if use_cache else None + if return_legacy_cache: + next_cache = next_cache.to_legacy_cache() + + if not return_dict: + return tuple(v for v in [hidden_states, next_cache, all_hidden_states, all_self_attns] if v is not None) + return MoeModelOutputWithPast( + last_hidden_state=hidden_states, + past_key_values=next_cache, + hidden_states=all_hidden_states, + attentions=all_self_attns, + router_logits=all_router_logits, + ) + + def _update_causal_mask( + self, + attention_mask: torch.Tensor, + input_tensor: torch.Tensor, + cache_position: torch.Tensor, + past_key_values: Cache, + output_attentions: bool, + ): + # TODO: As of torch==2.2.0, the `attention_mask` passed to the model in `generate` is 2D and of dynamic length even when the static + # KV cache is used. This is an issue for torch.compile which then recaptures cudagraphs at each decode steps due to the dynamic shapes. + # (`recording cudagraph tree for symint key 13`, etc.), which is VERY slow. A workaround is `@torch.compiler.disable`, but this prevents using + # `fullgraph=True`. See more context in https://github.com/huggingface/transformers/pull/29114 + + if self.config._attn_implementation == "flash_attention_2": + if attention_mask is not None and 0.0 in attention_mask: + return attention_mask + return None + + # For SDPA, when possible, we will rely on its `is_causal` argument instead of its `attn_mask` argument, in + # order to dispatch on Flash Attention 2. This feature is not compatible with static cache, as SDPA will fail + # to infer the attention mask. + past_seen_tokens = past_key_values.get_seq_length() if past_key_values is not None else 0 + using_static_cache = isinstance(past_key_values, StaticCache) + + # When output attentions is True, sdpa implementation's forward method calls the eager implementation's forward + if self.config._attn_implementation == "sdpa" and not using_static_cache and not output_attentions: + if AttentionMaskConverter._ignore_causal_mask_sdpa( + attention_mask, + inputs_embeds=input_tensor, + past_key_values_length=past_seen_tokens, + is_training=self.training, + ): + return None + + dtype, device = input_tensor.dtype, input_tensor.device + min_dtype = torch.finfo(dtype).min + sequence_length = input_tensor.shape[1] + if using_static_cache: + target_length = past_key_values.get_max_length() + else: + target_length = ( + attention_mask.shape[-1] + if isinstance(attention_mask, torch.Tensor) + else past_seen_tokens + sequence_length + 1 + ) + + if attention_mask is not None and attention_mask.dim() == 4: + # in this case we assume that the mask comes already in inverted form and requires no inversion or slicing + if attention_mask.max() != 0: + raise ValueError("Custom 4D attention mask should be passed in inverted form with max==0`") + causal_mask = attention_mask + else: + causal_mask = torch.full( + (sequence_length, target_length), fill_value=min_dtype, dtype=dtype, device=device + ) + if sequence_length != 1: + causal_mask = torch.triu(causal_mask, diagonal=1) + causal_mask *= torch.arange(target_length, device=device) > cache_position.reshape(-1, 1) + causal_mask = causal_mask[None, None, :, :].expand(input_tensor.shape[0], 1, -1, -1) + if attention_mask is not None: + causal_mask = causal_mask.clone() # copy to contiguous memory for in-place edit + mask_length = attention_mask.shape[-1] + padding_mask = causal_mask[:, :, :, :mask_length] + attention_mask[:, None, None, :] + padding_mask = padding_mask == 0 + causal_mask[:, :, :, :mask_length] = causal_mask[:, :, :, :mask_length].masked_fill( + padding_mask, min_dtype + ) + if ( + self.config._attn_implementation == "sdpa" + and attention_mask is not None + and attention_mask.device.type == "cuda" + and not output_attentions + ): + # Attend to all tokens in fully masked rows in the causal_mask, for example the relevant first rows when + # using left padding. This is required by F.scaled_dot_product_attention memory-efficient attention path. + # Details: https://github.com/pytorch/pytorch/issues/110213 + causal_mask = AttentionMaskConverter._unmask_unattended(causal_mask, min_dtype) + + return causal_mask + + +class GraniteMoeForCausalLM(GraniteMoePreTrainedModel): + _tied_weights_keys = ["lm_head.weight"] + + def __init__(self, config: GraniteMoeConfig): + super().__init__(config) + self.model = GraniteMoeModel(config) + self.vocab_size = config.vocab_size + self.lm_head = nn.Linear(config.hidden_size, config.vocab_size, bias=False) + + self.router_aux_loss_coef = config.router_aux_loss_coef + self.num_experts = config.num_local_experts + self.num_experts_per_tok = config.num_experts_per_tok + + # Initialize weights and apply final processing + self.post_init() + + def get_input_embeddings(self): + return self.model.embed_tokens + + def set_input_embeddings(self, value): + self.model.embed_tokens = value + + def get_output_embeddings(self): + return self.lm_head + + def set_output_embeddings(self, new_embeddings): + self.lm_head = new_embeddings + + def set_decoder(self, decoder): + self.model = decoder + + def get_decoder(self): + return self.model + + @add_start_docstrings_to_model_forward(GRANITEMOE_INPUTS_DOCSTRING) + @replace_return_docstrings(output_type=MoeCausalLMOutputWithPast, config_class=_CONFIG_FOR_DOC) + def forward( + self, + input_ids: torch.LongTensor = None, + attention_mask: Optional[torch.Tensor] = None, + position_ids: Optional[torch.LongTensor] = None, + past_key_values: Optional[Union[Cache, List[torch.FloatTensor]]] = None, + inputs_embeds: Optional[torch.FloatTensor] = None, + labels: Optional[torch.LongTensor] = None, + use_cache: Optional[bool] = None, + output_attentions: Optional[bool] = None, + output_hidden_states: Optional[bool] = None, + output_router_logits: Optional[bool] = None, + return_dict: Optional[bool] = None, + cache_position: Optional[torch.LongTensor] = None, + ) -> Union[Tuple, MoeCausalLMOutputWithPast]: + r""" + Args: + labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*): + Labels for computing the masked language modeling loss. Indices should either be in `[0, ..., + config.vocab_size]` or -100 (see `input_ids` docstring). Tokens with indices set to `-100` are ignored + (masked), the loss is only computed for the tokens with labels in `[0, ..., config.vocab_size]`. + + Returns: + + Example: + + ```python + >>> from transformers import AutoTokenizer, GraniteMoeForCausalLM + + >>> model = GraniteMoeForCausalLM.from_pretrained("ibm/PowerMoE-3b") + >>> tokenizer = AutoTokenizer.from_pretrained("ibm/PowerMoE-3b") + + >>> prompt = "Hey, are you conscious? Can you talk to me?" + >>> inputs = tokenizer(prompt, return_tensors="pt") + + >>> # Generate + >>> generate_ids = model.generate(inputs.input_ids, max_length=30) + >>> tokenizer.batch_decode(generate_ids, skip_special_tokens=True, clean_up_tokenization_spaces=False)[0] + "Hey, are you conscious? Can you talk to me?\nI'm not conscious, but I can talk to you." + ```""" + output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions + output_router_logits = ( + output_router_logits if output_router_logits is not None else self.config.output_router_logits + ) + output_hidden_states = ( + output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states + ) + return_dict = return_dict if return_dict is not None else self.config.use_return_dict + + # decoder outputs consists of (dec_features, layer_state, dec_hidden, dec_attn) + outputs = self.model( + input_ids=input_ids, + attention_mask=attention_mask, + position_ids=position_ids, + past_key_values=past_key_values, + inputs_embeds=inputs_embeds, + use_cache=use_cache, + output_attentions=output_attentions, + output_hidden_states=output_hidden_states, + output_router_logits=output_router_logits, + return_dict=return_dict, + cache_position=cache_position, + ) + + hidden_states = outputs[0] + logits = self.lm_head(hidden_states) + logits = logits / self.config.logits_scaling + logits = logits.float() + + loss = None + if labels is not None: + # Shift so that tokens < n predict n + shift_logits = logits[..., :-1, :].contiguous() + shift_labels = labels[..., 1:].contiguous() + # Flatten the tokens + loss_fct = CrossEntropyLoss() + shift_logits = shift_logits.view(-1, self.config.vocab_size) + shift_labels = shift_labels.view(-1) + # Enable model parallelism + shift_labels = shift_labels.to(shift_logits.device) + loss = loss_fct(shift_logits, shift_labels) + + aux_loss = None + if output_router_logits: + aux_loss = load_balancing_loss_func( + outputs.router_logits if return_dict else outputs[-1], + self.num_experts, + self.num_experts_per_tok, + attention_mask, + ) + if labels is not None: + loss += self.router_aux_loss_coef * aux_loss.to(loss.device) # make sure to reside in the same device + + if not return_dict: + output = (logits,) + outputs[1:] + if output_router_logits: + output = (aux_loss,) + output + return (loss,) + output if loss is not None else output + + return MoeCausalLMOutputWithPast( + loss=loss, + aux_loss=aux_loss, + logits=logits, + past_key_values=outputs.past_key_values, + hidden_states=outputs.hidden_states, + attentions=outputs.attentions, + router_logits=outputs.router_logits, + ) + + def prepare_inputs_for_generation( + self, + input_ids, + past_key_values=None, + attention_mask=None, + inputs_embeds=None, + output_router_logits=False, + cache_position=None, + position_ids=None, + use_cache=True, + **kwargs, + ): + # If we have cache: let's slice `input_ids` through `cache_position`, to keep only the unprocessed tokens + # Exception 1: when passing input_embeds, input_ids may be missing entries + # Exception 2: some generation methods do special slicing of input_ids, so we don't need to do it here + if past_key_values is not None: + if inputs_embeds is not None: # Exception 1 + input_ids = input_ids[:, -cache_position.shape[0] :] + elif input_ids.shape[1] != cache_position.shape[0]: # Default case (the "else", a no op, is Exception 2) + input_ids = input_ids[:, cache_position] + + if attention_mask is not None and position_ids is None: + # create position_ids on the fly for batch generation + position_ids = attention_mask.long().cumsum(-1) - 1 + position_ids.masked_fill_(attention_mask == 0, 1) + if past_key_values: + position_ids = position_ids[:, -input_ids.shape[1] :] + + # This `clone` call is needed to avoid recapturing cuda graphs with `torch.compile`'s `mode="reduce-overhead`, as otherwise the input `position_ids` would have various stride during the decoding. Here, simply using `.contiguous()` is not sufficient as in the batch size = 1 case, `position_ids` is already contiguous but with varying stride which retriggers a capture. + position_ids = position_ids.clone(memory_format=torch.contiguous_format) + + # if `inputs_embeds` are passed, we only want to use them in the 1st generation step + if inputs_embeds is not None and cache_position[0] == 0: + model_inputs = {"inputs_embeds": inputs_embeds, "input_ids": None} + else: + # The clone here is for the same reason as for `position_ids`. + model_inputs = {"input_ids": input_ids.clone(memory_format=torch.contiguous_format), "inputs_embeds": None} + + if isinstance(past_key_values, StaticCache) and attention_mask.ndim == 2: + if model_inputs["inputs_embeds"] is not None: + batch_size, sequence_length, _ = model_inputs["inputs_embeds"].shape + device = model_inputs["inputs_embeds"].device + else: + batch_size, sequence_length = model_inputs["input_ids"].shape + device = model_inputs["input_ids"].device + + dtype = self.lm_head.weight.dtype + min_dtype = torch.finfo(dtype).min + + attention_mask = _prepare_4d_causal_attention_mask_with_cache_position( + attention_mask, + sequence_length=sequence_length, + target_length=past_key_values.get_max_length(), + dtype=dtype, + device=device, + min_dtype=min_dtype, + cache_position=cache_position, + batch_size=batch_size, + ) + + model_inputs.update( + { + "position_ids": position_ids, + "cache_position": cache_position, + "past_key_values": past_key_values, + "use_cache": use_cache, + "attention_mask": attention_mask, + "output_router_logits": output_router_logits, + } + ) + return model_inputs + + @staticmethod + def _reorder_cache(past_key_values, beam_idx): + reordered_past = () + for layer_past in past_key_values: + reordered_past += ( + tuple(past_state.index_select(0, beam_idx.to(past_state.device)) for past_state in layer_past), + ) + return reordered_past diff --git a/src/transformers/utils/dummy_pt_objects.py b/src/transformers/utils/dummy_pt_objects.py index 5f8ae6b5fbffac..dd51c08c788964 100644 --- a/src/transformers/utils/dummy_pt_objects.py +++ b/src/transformers/utils/dummy_pt_objects.py @@ -4632,6 +4632,27 @@ def __init__(self, *args, **kwargs): requires_backends(self, ["torch"]) +class GraniteMoeForCausalLM(metaclass=DummyObject): + _backends = ["torch"] + + def __init__(self, *args, **kwargs): + requires_backends(self, ["torch"]) + + +class GraniteMoeModel(metaclass=DummyObject): + _backends = ["torch"] + + def __init__(self, *args, **kwargs): + requires_backends(self, ["torch"]) + + +class GraniteMoePreTrainedModel(metaclass=DummyObject): + _backends = ["torch"] + + def __init__(self, *args, **kwargs): + requires_backends(self, ["torch"]) + + class GroundingDinoForObjectDetection(metaclass=DummyObject): _backends = ["torch"] diff --git a/tests/models/granite/test_modeling_granite.py b/tests/models/granite/test_modeling_granite.py index 8771cd50978a7f..0f4d7640a1bb7d 100644 --- a/tests/models/granite/test_modeling_granite.py +++ b/tests/models/granite/test_modeling_granite.py @@ -323,61 +323,6 @@ def test_model_various_embeddings(self): config_and_inputs[0].position_embedding_type = type self.model_tester.create_and_check_model(*config_and_inputs) - # def test_granite_sequence_classification_model(self): - # config, input_dict = self.model_tester.prepare_config_and_inputs_for_common() - # config.num_labels = 3 - # input_ids = input_dict["input_ids"] - # attention_mask = input_ids.ne(1).to(torch_device) - # sequence_labels = ids_tensor([self.model_tester.batch_size], self.model_tester.type_sequence_label_size) - # model = GraniteForSequenceClassification(config) - # model.to(torch_device) - # model.eval() - # result = model(input_ids, attention_mask=attention_mask, labels=sequence_labels) - # self.assertEqual(result.logits.shape, (self.model_tester.batch_size, self.model_tester.num_labels)) - - # def test_granite_sequence_classification_model_for_single_label(self): - # config, input_dict = self.model_tester.prepare_config_and_inputs_for_common() - # config.num_labels = 3 - # config.problem_type = "single_label_classification" - # input_ids = input_dict["input_ids"] - # attention_mask = input_ids.ne(1).to(torch_device) - # sequence_labels = ids_tensor([self.model_tester.batch_size], self.model_tester.type_sequence_label_size) - # model = GraniteForSequenceClassification(config) - # model.to(torch_device) - # model.eval() - # result = model(input_ids, attention_mask=attention_mask, labels=sequence_labels) - # self.assertEqual(result.logits.shape, (self.model_tester.batch_size, self.model_tester.num_labels)) - - # def test_granite_sequence_classification_model_for_multi_label(self): - # config, input_dict = self.model_tester.prepare_config_and_inputs_for_common() - # config.num_labels = 3 - # config.problem_type = "multi_label_classification" - # input_ids = input_dict["input_ids"] - # attention_mask = input_ids.ne(1).to(torch_device) - # sequence_labels = ids_tensor( - # [self.model_tester.batch_size, config.num_labels], self.model_tester.type_sequence_label_size - # ).to(torch.float) - # model = GraniteForSequenceClassification(config) - # model.to(torch_device) - # model.eval() - # result = model(input_ids, attention_mask=attention_mask, labels=sequence_labels) - # self.assertEqual(result.logits.shape, (self.model_tester.batch_size, self.model_tester.num_labels)) - - # def test_granite_token_classification_model(self): - # config, input_dict = self.model_tester.prepare_config_and_inputs_for_common() - # config.num_labels = 3 - # input_ids = input_dict["input_ids"] - # attention_mask = input_ids.ne(1).to(torch_device) - # token_labels = ids_tensor([self.model_tester.batch_size, self.model_tester.seq_length], config.num_labels) - # model = GraniteForTokenClassification(config=config) - # model.to(torch_device) - # model.eval() - # result = model(input_ids, attention_mask=attention_mask, labels=token_labels) - # self.assertEqual( - # result.logits.shape, - # (self.model_tester.batch_size, self.model_tester.seq_length, self.model_tester.num_labels), - # ) - @unittest.skip("Granite buffers include complex numbers, which breaks this test") def test_save_load_fast_init_from_base(self): pass @@ -581,12 +526,13 @@ def test_model_3b_logits_bf16(self): # Expected mean on dim = -1 # fmt: off - EXPECTED_MEAN = torch.tensor([[-1.8799, -3.1269, -2.8297, -2.3755, -2.7364, -2.2389, -2.5914, -2.4154]]) + EXPECTED_MEAN = torch.tensor([[-1.9798, -3.1626, -2.8062, -2.3777, -2.7091, -2.2338, -2.5924, -2.3974]]) self.assertTrue(torch.allclose(EXPECTED_MEAN.to(torch_device), out.logits.mean(-1), atol=1e-2, rtol=1e-2)) # slicing logits[0, 0, 0:15] - EXPECTED_SLICE = torch.tensor([[4.8125, -2.0156, -2.0156, -2.0000, -2.0000, -2.8438, -2.0156, -2.0000, -2.0000, -2.0000, -2.0000, -2.0000, -2.0000, -2.0000, -2.0000]]) + EXPECTED_SLICE = torch.tensor([[4.8750, -2.1875, -2.1875, -2.1875, -2.1875, -2.8438, -2.1875, -2.1875, + -2.1875, -2.1875, -2.1875, -2.1875, -2.1875, -2.1875, -2.1875]]) # fmt: on self.assertTrue( @@ -610,6 +556,6 @@ def test_model_3b_logits(self): # fmt: off # Expected mean on dim = -1 - EXPECTED_MEAN = torch.tensor([[0.0000, 0.0000, -3.4374, -2.1636, -2.6245, -3.0029, -3.8229, -3.1158]]) + EXPECTED_MEAN = torch.tensor([[-2.0984, -3.1294, -2.8153, -2.3568, -2.7337, -2.2624, -2.6016, -2.4022]]) self.assertTrue(torch.allclose(EXPECTED_MEAN.to(torch_device), out.logits.mean(-1), atol=1e-2, rtol=1e-2)) diff --git a/tests/models/granitemoe/__init__.py b/tests/models/granitemoe/__init__.py new file mode 100644 index 00000000000000..e69de29bb2d1d6 diff --git a/tests/models/granitemoe/test_modeling_granitemoe.py b/tests/models/granitemoe/test_modeling_granitemoe.py new file mode 100644 index 00000000000000..158259ed5fb4c0 --- /dev/null +++ b/tests/models/granitemoe/test_modeling_granitemoe.py @@ -0,0 +1,560 @@ +# coding=utf-8 +# Copyright 2024 The HuggingFace Inc. team. All rights reserved. +# +# Licensed under the Apache License, Version 2.0 (the "License"); +# you may not use this file except in compliance with the License. +# You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +# Unless required by applicable law or agreed to in writing, software +# distributed under the License is distributed on an "AS IS" BASIS, +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +# See the License for the specific language governing permissions and +# limitations under the License. +"""Testing suite for the PyTorch GraniteMoe model.""" + +import tempfile +import unittest + +import pytest +from parameterized import parameterized + +from transformers import AutoTokenizer, GraniteMoeConfig, is_torch_available, set_seed +from transformers.testing_utils import ( + require_bitsandbytes, + require_flash_attn, + require_read_token, + require_torch, + require_torch_gpu, + require_torch_sdpa, + slow, + torch_device, +) + +from ...generation.test_utils import GenerationTesterMixin +from ...test_configuration_common import ConfigTester +from ...test_modeling_common import ModelTesterMixin, ids_tensor + + +if is_torch_available(): + import torch + + from transformers import ( + GraniteMoeForCausalLM, + GraniteMoeModel, + ) + from transformers.models.granitemoe.modeling_granitemoe import ( + GraniteMoeRotaryEmbedding, + ) + + +class GraniteMoeModelTester: + def __init__( + self, + parent, + batch_size=13, + seq_length=7, + is_training=True, + use_input_mask=True, + use_token_type_ids=False, + use_labels=True, + vocab_size=99, + hidden_size=32, + num_hidden_layers=2, + num_attention_heads=4, + intermediate_size=37, + hidden_act="gelu", + hidden_dropout_prob=0.1, + attention_probs_dropout_prob=0.1, + max_position_embeddings=512, + type_vocab_size=16, + type_sequence_label_size=2, + initializer_range=0.02, + num_labels=3, + num_choices=4, + pad_token_id=0, + scope=None, + ): + self.parent = parent + self.batch_size = batch_size + self.seq_length = seq_length + self.is_training = is_training + self.use_input_mask = use_input_mask + self.use_token_type_ids = use_token_type_ids + self.use_labels = use_labels + self.vocab_size = vocab_size + self.hidden_size = hidden_size + self.num_hidden_layers = num_hidden_layers + self.num_attention_heads = num_attention_heads + self.intermediate_size = intermediate_size + self.hidden_act = hidden_act + self.hidden_dropout_prob = hidden_dropout_prob + self.attention_probs_dropout_prob = attention_probs_dropout_prob + self.max_position_embeddings = max_position_embeddings + self.type_vocab_size = type_vocab_size + self.type_sequence_label_size = type_sequence_label_size + self.initializer_range = initializer_range + self.num_labels = num_labels + self.num_choices = num_choices + self.pad_token_id = pad_token_id + self.scope = scope + + def prepare_config_and_inputs(self): + input_ids = ids_tensor([self.batch_size, self.seq_length], self.vocab_size) + + input_mask = None + if self.use_input_mask: + input_mask = torch.tril(torch.ones(self.batch_size, self.seq_length)).to(torch_device) + + token_type_ids = None + if self.use_token_type_ids: + token_type_ids = ids_tensor([self.batch_size, self.seq_length], self.type_vocab_size) + + sequence_labels = None + token_labels = None + choice_labels = None + if self.use_labels: + sequence_labels = ids_tensor([self.batch_size], self.type_sequence_label_size) + token_labels = ids_tensor([self.batch_size, self.seq_length], self.num_labels) + choice_labels = ids_tensor([self.batch_size], self.num_choices) + + config = self.get_config() + + return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels + + def get_config(self): + return GraniteMoeConfig( + vocab_size=self.vocab_size, + hidden_size=self.hidden_size, + num_hidden_layers=self.num_hidden_layers, + num_attention_heads=self.num_attention_heads, + intermediate_size=self.intermediate_size, + hidden_act=self.hidden_act, + hidden_dropout_prob=self.hidden_dropout_prob, + attention_probs_dropout_prob=self.attention_probs_dropout_prob, + max_position_embeddings=self.max_position_embeddings, + type_vocab_size=self.type_vocab_size, + is_decoder=False, + initializer_range=self.initializer_range, + pad_token_id=self.pad_token_id, + ) + + def create_and_check_model( + self, config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels + ): + model = GraniteMoeModel(config=config) + model.to(torch_device) + model.eval() + result = model(input_ids, attention_mask=input_mask) + result = model(input_ids) + self.parent.assertEqual(result.last_hidden_state.shape, (self.batch_size, self.seq_length, self.hidden_size)) + + def create_and_check_model_as_decoder( + self, + config, + input_ids, + token_type_ids, + input_mask, + sequence_labels, + token_labels, + choice_labels, + encoder_hidden_states, + encoder_attention_mask, + ): + config.add_cross_attention = True + model = GraniteMoeModel(config) + model.to(torch_device) + model.eval() + result = model( + input_ids, + attention_mask=input_mask, + encoder_hidden_states=encoder_hidden_states, + encoder_attention_mask=encoder_attention_mask, + ) + result = model( + input_ids, + attention_mask=input_mask, + encoder_hidden_states=encoder_hidden_states, + ) + result = model(input_ids, attention_mask=input_mask) + self.parent.assertEqual(result.last_hidden_state.shape, (self.batch_size, self.seq_length, self.hidden_size)) + + def create_and_check_for_causal_lm( + self, + config, + input_ids, + token_type_ids, + input_mask, + sequence_labels, + token_labels, + choice_labels, + encoder_hidden_states, + encoder_attention_mask, + ): + model = GraniteMoeForCausalLM(config=config) + model.to(torch_device) + model.eval() + result = model(input_ids, attention_mask=input_mask, labels=token_labels) + self.parent.assertEqual(result.logits.shape, (self.batch_size, self.seq_length, self.vocab_size)) + + def create_and_check_decoder_model_past_large_inputs( + self, + config, + input_ids, + token_type_ids, + input_mask, + sequence_labels, + token_labels, + choice_labels, + encoder_hidden_states, + encoder_attention_mask, + ): + config.is_decoder = True + config.add_cross_attention = True + model = GraniteMoeForCausalLM(config=config) + model.to(torch_device) + model.eval() + + # first forward pass + outputs = model( + input_ids, + attention_mask=input_mask, + encoder_hidden_states=encoder_hidden_states, + encoder_attention_mask=encoder_attention_mask, + use_cache=True, + ) + past_key_values = outputs.past_key_values + + # create hypothetical multiple next token and extent to next_input_ids + next_tokens = ids_tensor((self.batch_size, 3), config.vocab_size) + next_mask = ids_tensor((self.batch_size, 3), vocab_size=2) + + # append to next input_ids and + next_input_ids = torch.cat([input_ids, next_tokens], dim=-1) + next_attention_mask = torch.cat([input_mask, next_mask], dim=-1) + + output_from_no_past = model( + next_input_ids, + attention_mask=next_attention_mask, + encoder_hidden_states=encoder_hidden_states, + encoder_attention_mask=encoder_attention_mask, + output_hidden_states=True, + )["hidden_states"][0] + output_from_past = model( + next_tokens, + attention_mask=next_attention_mask, + encoder_hidden_states=encoder_hidden_states, + encoder_attention_mask=encoder_attention_mask, + past_key_values=past_key_values, + output_hidden_states=True, + )["hidden_states"][0] + + # select random slice + random_slice_idx = ids_tensor((1,), output_from_past.shape[-1]).item() + output_from_no_past_slice = output_from_no_past[:, -3:, random_slice_idx].detach() + output_from_past_slice = output_from_past[:, :, random_slice_idx].detach() + + self.parent.assertTrue(output_from_past_slice.shape[1] == next_tokens.shape[1]) + + # test that outputs are equal for slice + self.parent.assertTrue(torch.allclose(output_from_past_slice, output_from_no_past_slice, atol=1e-3)) + + def prepare_config_and_inputs_for_common(self): + config_and_inputs = self.prepare_config_and_inputs() + ( + config, + input_ids, + token_type_ids, + input_mask, + sequence_labels, + token_labels, + choice_labels, + ) = config_and_inputs + inputs_dict = {"input_ids": input_ids, "attention_mask": input_mask} + return config, inputs_dict + + +@require_torch +class GraniteMoeModelTest(ModelTesterMixin, GenerationTesterMixin, unittest.TestCase): + all_model_classes = ( + ( + GraniteMoeModel, + GraniteMoeForCausalLM, + ) + if is_torch_available() + else () + ) + all_generative_model_classes = (GraniteMoeForCausalLM,) if is_torch_available() else () + pipeline_model_mapping = ( + { + "feature-extraction": GraniteMoeModel, + "text-generation": GraniteMoeForCausalLM, + } + if is_torch_available() + else {} + ) + test_headmasking = False + test_pruning = False + fx_compatible = False + + # Need to use `0.8` instead of `0.9` for `test_cpu_offload` + # This is because we are hitting edge cases with the causal_mask buffer + model_split_percents = [0.5, 0.7, 0.8] + + # used in `test_torch_compile` + _torch_compile_test_ckpt = "ibm/PowerMoE-3b" + + def setUp(self): + self.model_tester = GraniteMoeModelTester(self) + self.config_tester = ConfigTester(self, config_class=GraniteMoeConfig, hidden_size=37) + + def test_config(self): + self.config_tester.run_common_tests() + + def test_model(self): + config_and_inputs = self.model_tester.prepare_config_and_inputs() + self.model_tester.create_and_check_model(*config_and_inputs) + + def test_model_various_embeddings(self): + config_and_inputs = self.model_tester.prepare_config_and_inputs() + for type in ["absolute", "relative_key", "relative_key_query"]: + config_and_inputs[0].position_embedding_type = type + self.model_tester.create_and_check_model(*config_and_inputs) + + @unittest.skip("GraniteMoe buffers include complex numbers, which breaks this test") + def test_save_load_fast_init_from_base(self): + pass + + @parameterized.expand([("linear",), ("dynamic",)]) + def test_model_rope_scaling_from_config(self, scaling_type): + config, _ = self.model_tester.prepare_config_and_inputs_for_common() + short_input = ids_tensor([1, 10], config.vocab_size) + long_input = ids_tensor([1, int(config.max_position_embeddings * 1.5)], config.vocab_size) + + set_seed(42) # Fixed seed at init time so the two models get the same random weights + original_model = GraniteMoeModel(config) + original_model.to(torch_device) + original_model.eval() + original_short_output = original_model(short_input).last_hidden_state + original_long_output = original_model(long_input).last_hidden_state + + set_seed(42) # Fixed seed at init time so the two models get the same random weights + config.rope_scaling = {"type": scaling_type, "factor": 10.0} + scaled_model = GraniteMoeModel(config) + scaled_model.to(torch_device) + scaled_model.eval() + scaled_short_output = scaled_model(short_input).last_hidden_state + scaled_long_output = scaled_model(long_input).last_hidden_state + + # Dynamic scaling does not change the RoPE embeddings until it receives an input longer than the original + # maximum sequence length, so the outputs for the short input should match. + if scaling_type == "dynamic": + self.assertTrue(torch.allclose(original_short_output, scaled_short_output, atol=1e-5)) + else: + self.assertFalse(torch.allclose(original_short_output, scaled_short_output, atol=1e-5)) + + # The output should be different for long inputs + self.assertFalse(torch.allclose(original_long_output, scaled_long_output, atol=1e-5)) + + def test_model_rope_scaling(self): + config, _ = self.model_tester.prepare_config_and_inputs_for_common() + scaling_factor = 10 + short_input_length = 10 + long_input_length = int(config.max_position_embeddings * 1.5) + + # Inputs + x = torch.randn(1, dtype=torch.float32, device=torch_device) # used exlusively to get the dtype and the device + position_ids_short = torch.arange(short_input_length, dtype=torch.long, device=torch_device) + position_ids_short = position_ids_short.unsqueeze(0) + position_ids_long = torch.arange(long_input_length, dtype=torch.long, device=torch_device) + position_ids_long = position_ids_long.unsqueeze(0) + + # Sanity check original RoPE + original_rope = GraniteMoeRotaryEmbedding(config=config).to(torch_device) + original_cos_short, original_sin_short = original_rope(x, position_ids_short) + original_cos_long, original_sin_long = original_rope(x, position_ids_long) + torch.testing.assert_close(original_cos_short, original_cos_long[:, :short_input_length, :]) + torch.testing.assert_close(original_sin_short, original_sin_long[:, :short_input_length, :]) + + # Sanity check linear RoPE scaling + # New position "x" should match original position with index "x/scaling_factor" + config.rope_scaling = {"type": "linear", "factor": scaling_factor} + linear_scaling_rope = GraniteMoeRotaryEmbedding(config=config).to(torch_device) + linear_cos_short, linear_sin_short = linear_scaling_rope(x, position_ids_short) + linear_cos_long, linear_sin_long = linear_scaling_rope(x, position_ids_long) + torch.testing.assert_close(linear_cos_short, linear_cos_long[:, :short_input_length, :]) + torch.testing.assert_close(linear_sin_short, linear_sin_long[:, :short_input_length, :]) + for new_position in range(0, long_input_length, scaling_factor): + original_position = int(new_position // scaling_factor) + torch.testing.assert_close(linear_cos_long[:, new_position, :], original_cos_long[:, original_position, :]) + torch.testing.assert_close(linear_sin_long[:, new_position, :], original_sin_long[:, original_position, :]) + + # Sanity check Dynamic NTK RoPE scaling + # Scaling should only be observed after a long input is fed. We can observe that the frequencies increase + # with scaling_factor (or that `inv_freq` decreases) + config.rope_scaling = {"type": "dynamic", "factor": scaling_factor} + ntk_scaling_rope = GraniteMoeRotaryEmbedding(config=config).to(torch_device) + ntk_cos_short, ntk_sin_short = ntk_scaling_rope(x, position_ids_short) + ntk_cos_long, ntk_sin_long = ntk_scaling_rope(x, position_ids_long) + torch.testing.assert_close(ntk_cos_short, original_cos_short) + torch.testing.assert_close(ntk_sin_short, original_sin_short) + with self.assertRaises(AssertionError): + torch.testing.assert_close(ntk_cos_long, original_cos_long) + with self.assertRaises(AssertionError): + torch.testing.assert_close(ntk_sin_long, original_sin_long) + self.assertTrue((ntk_scaling_rope.inv_freq <= original_rope.inv_freq).all()) + + # Sanity check Yarn RoPE scaling + # Scaling should be over the entire input + config.rope_scaling = {"type": "yarn", "factor": scaling_factor} + yarn_scaling_rope = GraniteMoeRotaryEmbedding(config=config).to(torch_device) + yarn_cos_short, yarn_sin_short = yarn_scaling_rope(x, position_ids_short) + yarn_cos_long, yarn_sin_long = yarn_scaling_rope(x, position_ids_long) + torch.testing.assert_close(yarn_cos_short, yarn_cos_long[:, :short_input_length, :]) + torch.testing.assert_close(yarn_sin_short, yarn_sin_long[:, :short_input_length, :]) + with self.assertRaises(AssertionError): + torch.testing.assert_close(yarn_cos_short, original_cos_short) + with self.assertRaises(AssertionError): + torch.testing.assert_close(yarn_sin_short, original_sin_short) + with self.assertRaises(AssertionError): + torch.testing.assert_close(yarn_cos_long, original_cos_long) + with self.assertRaises(AssertionError): + torch.testing.assert_close(yarn_sin_long, original_sin_long) + + @require_flash_attn + @require_torch_gpu + @require_bitsandbytes + @pytest.mark.flash_attn_test + @require_read_token + @slow + def test_flash_attn_2_generate_padding_right(self): + """ + Overwritting the common test as the test is flaky on tiny models + """ + model = GraniteMoeForCausalLM.from_pretrained( + "ibm-granite/granitemoe-3b", + load_in_4bit=True, + device_map={"": 0}, + ) + + tokenizer = AutoTokenizer.from_pretrained("ibm-granite/granitemoe-3b") + + texts = ["hi", "Hello this is a very long sentence"] + + tokenizer.padding_side = "right" + tokenizer.pad_token = tokenizer.eos_token + + inputs = tokenizer(texts, return_tensors="pt", padding=True).to(0) + + output_native = model.generate(**inputs, max_new_tokens=20, do_sample=False) + output_native = tokenizer.batch_decode(output_native) + + model = GraniteMoeForCausalLM.from_pretrained( + "ibm-granite/granitemoe-3b", + load_in_4bit=True, + device_map={"": 0}, + attn_implementation="flash_attention_2", + ) + + output_fa_2 = model.generate(**inputs, max_new_tokens=20, do_sample=False) + output_fa_2 = tokenizer.batch_decode(output_fa_2) + + self.assertListEqual(output_native, output_fa_2) + + @require_flash_attn + @require_torch_gpu + @slow + def test_use_flash_attention_2_true(self): + """ + NOTE: this is the only test testing that the legacy `use_flash_attention=2` argument still works as intended. + """ + config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common() + for model_class in self.all_model_classes: + with tempfile.TemporaryDirectory() as tmp_dir: + model = model_class(config) + model.save_pretrained(tmp_dir) + + new_model = GraniteMoeForCausalLM.from_pretrained( + tmp_dir, use_flash_attention_2=True, torch_dtype=torch.float16 + ).to("cuda") + + self.assertTrue(new_model.config._attn_implementation == "flash_attention_2") + + has_flash = False + for name, submodule in new_model.named_modules(): + if "FlashAttention" in submodule.__class__.__name__: + has_flash = True + break + if not has_flash: + raise ValueError("The flash model should have flash attention layers") + + @parameterized.expand([("float16",), ("bfloat16",), ("float32",)]) + @require_torch_sdpa + @slow + def test_eager_matches_sdpa_inference(self, torch_dtype: str): + """ + skipping the test since mup is very flaky and gets consistently different outputs + """ + self.skipTest("skipping the test since mup is very flaky and gets consistently different outputs") + + +@require_torch_gpu +class GraniteMoeIntegrationTest(unittest.TestCase): + # This variable is used to determine which CUDA device are we using for our runners (A10 or T4) + # Depending on the hardware we get different logits / generations + cuda_compute_capability_major_version = None + + @classmethod + def setUpClass(cls): + if is_torch_available() and torch.cuda.is_available(): + # 8 is for A100 / A10 and 7 for T4 + cls.cuda_compute_capability_major_version = torch.cuda.get_device_capability()[0] + + @slow + @require_read_token + def test_model_3b_logits(self): + input_ids = [1, 306, 4658, 278, 6593, 310, 2834, 338] + + model = GraniteMoeForCausalLM.from_pretrained("ibm/PowerMoE-3b", device_map="auto") + + with torch.no_grad(): + out = model(torch.tensor([input_ids]).to(torch_device)) + + # fmt: off + # Expected mean on dim = -1 + EXPECTED_MEAN = torch.tensor([[-2.2122, -1.6632, -2.9269, -2.3344, -2.0143, -3.0146, -2.6839, -2.5610]]) + + self.assertTrue(torch.allclose(EXPECTED_MEAN.to(torch_device), out.logits.mean(-1), atol=1e-2, rtol=1e-2)) + + # slicing logits[0, 0, 0:15] + EXPECTED_SLICE = torch.tensor([[4.8785, -2.2890, -2.2892, -2.2885, -2.2890, -3.5007, -2.2897, -2.2892, + -2.2895, -2.2891, -2.2887, -2.2882, -2.2889, -2.2898, -2.2892]]) + # fmt: on + + self.assertTrue( + torch.allclose( + EXPECTED_SLICE.to(torch_device), + out.logits[0, 0, :15], + atol=1e-3, + rtol=1e-3, + ) + ) + + @slow + def test_model_3b_generation(self): + # ground truth text generated with dola_layers="low", repetition_penalty=1.2 + EXPECTED_TEXT_COMPLETION = ( + "Simply put, the theory of relativity states that \n$$\n\\frac{d^2x^\\mu}{d\\tau^2} = " + "\\frac{1}{c^2}\\frac{d^2x^\\mu}{dt^2}\n$$\nwhere $x^\\mu$ is a four-vector, $\\tau$ is the proper time" + ) + prompt = "Simply put, the theory of relativity states that " + tokenizer = AutoTokenizer.from_pretrained("ibm/PowerMoE-3b") + model = GraniteMoeForCausalLM.from_pretrained("ibm/PowerMoE-3b", device_map="auto") + model_inputs = tokenizer(prompt, return_tensors="pt").to(model.device) + + # greedy generation outputs + generated_ids = model.generate(**model_inputs, max_new_tokens=64, top_p=None, temperature=1, do_sample=False) + text = tokenizer.decode(generated_ids[0], skip_special_tokens=True) + + self.assertEqual(EXPECTED_TEXT_COMPLETION, text) diff --git a/utils/check_config_docstrings.py b/utils/check_config_docstrings.py index 32bbe077a5c31b..d243dd0c35b612 100644 --- a/utils/check_config_docstrings.py +++ b/utils/check_config_docstrings.py @@ -45,6 +45,7 @@ "VisionTextDualEncoderConfig", "LlamaConfig", "GraniteConfig", + "GraniteMoeConfig", }