Skip to content

Commit 7077f16

Browse files
committed
Change 21k model naming from _21k to _in21k for consistency with existing 21k models.
1 parent 2a72d38 commit 7077f16

File tree

2 files changed

+20
-20
lines changed

2 files changed

+20
-20
lines changed

README.md

Lines changed: 2 additions & 2 deletions
Original file line numberDiff line numberDiff line change
@@ -26,8 +26,8 @@ I'm fortunate to be able to dedicate significant time and money of my own suppor
2626
### May 14, 2021
2727
* Add EfficientNet-V2 official model defs w/ ported weights from official [Tensorflow/Keras](https://github.com/google/automl/tree/master/efficientnetv2) impl.
2828
* 1k trained variants: `tf_efficientnetv2_s/m/l`
29-
* 21k trained variants: `tf_efficientnetv2_s/m/l_21k`
30-
* 21k pretrained -> 1k fine-tuned: `tf_efficientnetv2_s/m/l_21ft1k`
29+
* 21k trained variants: `tf_efficientnetv2_s/m/l_in21k`
30+
* 21k pretrained -> 1k fine-tuned: `tf_efficientnetv2_s/m/l_in21ft1k`
3131
* v2 models w/ v1 scaling: `tf_efficientnetv2_b0` through `b3`
3232
* Rename my prev V2 guess `efficientnet_v2s` -> `efficientnetv2_rw_s`
3333
* Some blank `efficientnetv2_*` models in-place for future native PyTorch training

timm/models/efficientnet.py

Lines changed: 18 additions & 18 deletions
Original file line numberDiff line numberDiff line change
@@ -332,28 +332,28 @@ def _cfg(url='', **kwargs):
332332
mean=(0.5, 0.5, 0.5), std=(0.5, 0.5, 0.5),
333333
input_size=(3, 384, 384), test_input_size=(3, 480, 480), pool_size=(12, 12), crop_pct=1.0),
334334

335-
'tf_efficientnetv2_s_21ft1k': _cfg(
335+
'tf_efficientnetv2_s_in21ft1k': _cfg(
336336
url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-effv2-weights/tf_efficientnetv2_s_21ft1k-d7dafa41.pth',
337337
mean=(0.5, 0.5, 0.5), std=(0.5, 0.5, 0.5),
338338
input_size=(3, 300, 300), test_input_size=(3, 384, 384), pool_size=(10, 10), crop_pct=1.0),
339-
'tf_efficientnetv2_m_21ft1k': _cfg(
339+
'tf_efficientnetv2_m_in21ft1k': _cfg(
340340
url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-effv2-weights/tf_efficientnetv2_m_21ft1k-bf41664a.pth',
341341
mean=(0.5, 0.5, 0.5), std=(0.5, 0.5, 0.5),
342342
input_size=(3, 384, 384), test_input_size=(3, 480, 480), pool_size=(12, 12), crop_pct=1.0),
343-
'tf_efficientnetv2_l_21ft1k': _cfg(
343+
'tf_efficientnetv2_l_in21ft1k': _cfg(
344344
url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-effv2-weights/tf_efficientnetv2_l_21ft1k-60127a9d.pth',
345345
mean=(0.5, 0.5, 0.5), std=(0.5, 0.5, 0.5),
346346
input_size=(3, 384, 384), test_input_size=(3, 480, 480), pool_size=(12, 12), crop_pct=1.0),
347347

348-
'tf_efficientnetv2_s_21k': _cfg(
348+
'tf_efficientnetv2_s_in21k': _cfg(
349349
url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-effv2-weights/tf_efficientnetv2_s_21k-6337ad01.pth',
350350
mean=(0.5, 0.5, 0.5), std=(0.5, 0.5, 0.5), num_classes=21843,
351351
input_size=(3, 300, 300), test_input_size=(3, 384, 384), pool_size=(10, 10), crop_pct=1.0),
352-
'tf_efficientnetv2_m_21k': _cfg(
352+
'tf_efficientnetv2_m_in21k': _cfg(
353353
url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-effv2-weights/tf_efficientnetv2_m_21k-361418a2.pth',
354354
mean=(0.5, 0.5, 0.5), std=(0.5, 0.5, 0.5), num_classes=21843,
355355
input_size=(3, 384, 384), test_input_size=(3, 480, 480), pool_size=(12, 12), crop_pct=1.0),
356-
'tf_efficientnetv2_l_21k': _cfg(
356+
'tf_efficientnetv2_l_in21k': _cfg(
357357
url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-effv2-weights/tf_efficientnetv2_l_21k-91a19ec9.pth',
358358
mean=(0.5, 0.5, 0.5), std=(0.5, 0.5, 0.5), num_classes=21843,
359359
input_size=(3, 384, 384), test_input_size=(3, 480, 480), pool_size=(12, 12), crop_pct=1.0),
@@ -1929,62 +1929,62 @@ def tf_efficientnetv2_l(pretrained=False, **kwargs):
19291929

19301930

19311931
@register_model
1932-
def tf_efficientnetv2_s_21ft1k(pretrained=False, **kwargs):
1932+
def tf_efficientnetv2_s_in21ft1k(pretrained=False, **kwargs):
19331933
""" EfficientNet-V2 Small. Pretrained on ImageNet-21k, fine-tuned on 1k. Tensorflow compatible variant
19341934
"""
19351935
kwargs['bn_eps'] = BN_EPS_TF_DEFAULT
19361936
kwargs['pad_type'] = 'same'
1937-
model = _gen_efficientnetv2_s('tf_efficientnetv2_s_21ft1k', pretrained=pretrained, **kwargs)
1937+
model = _gen_efficientnetv2_s('tf_efficientnetv2_s_in21ft1k', pretrained=pretrained, **kwargs)
19381938
return model
19391939

19401940

19411941
@register_model
1942-
def tf_efficientnetv2_m_21ft1k(pretrained=False, **kwargs):
1942+
def tf_efficientnetv2_m_in21ft1k(pretrained=False, **kwargs):
19431943
""" EfficientNet-V2 Medium. Pretrained on ImageNet-21k, fine-tuned on 1k. Tensorflow compatible variant
19441944
"""
19451945
kwargs['bn_eps'] = BN_EPS_TF_DEFAULT
19461946
kwargs['pad_type'] = 'same'
1947-
model = _gen_efficientnetv2_m('tf_efficientnetv2_m_21ft1k', pretrained=pretrained, **kwargs)
1947+
model = _gen_efficientnetv2_m('tf_efficientnetv2_m_in21ft1k', pretrained=pretrained, **kwargs)
19481948
return model
19491949

19501950

19511951
@register_model
1952-
def tf_efficientnetv2_l_21ft1k(pretrained=False, **kwargs):
1952+
def tf_efficientnetv2_l_in21ft1k(pretrained=False, **kwargs):
19531953
""" EfficientNet-V2 Large. Pretrained on ImageNet-21k, fine-tuned on 1k. Tensorflow compatible variant
19541954
"""
19551955
kwargs['bn_eps'] = BN_EPS_TF_DEFAULT
19561956
kwargs['pad_type'] = 'same'
1957-
model = _gen_efficientnetv2_l('tf_efficientnetv2_l_21ft1k', pretrained=pretrained, **kwargs)
1957+
model = _gen_efficientnetv2_l('tf_efficientnetv2_l_in21ft1k', pretrained=pretrained, **kwargs)
19581958
return model
19591959

19601960

19611961
@register_model
1962-
def tf_efficientnetv2_s_21k(pretrained=False, **kwargs):
1962+
def tf_efficientnetv2_s_in21k(pretrained=False, **kwargs):
19631963
""" EfficientNet-V2 Small w/ ImageNet-21k pretrained weights. Tensorflow compatible variant
19641964
"""
19651965
kwargs['bn_eps'] = BN_EPS_TF_DEFAULT
19661966
kwargs['pad_type'] = 'same'
1967-
model = _gen_efficientnetv2_s('tf_efficientnetv2_s_21k', pretrained=pretrained, **kwargs)
1967+
model = _gen_efficientnetv2_s('tf_efficientnetv2_s_in21k', pretrained=pretrained, **kwargs)
19681968
return model
19691969

19701970

19711971
@register_model
1972-
def tf_efficientnetv2_m_21k(pretrained=False, **kwargs):
1972+
def tf_efficientnetv2_m_in21k(pretrained=False, **kwargs):
19731973
""" EfficientNet-V2 Medium w/ ImageNet-21k pretrained weights. Tensorflow compatible variant
19741974
"""
19751975
kwargs['bn_eps'] = BN_EPS_TF_DEFAULT
19761976
kwargs['pad_type'] = 'same'
1977-
model = _gen_efficientnetv2_m('tf_efficientnetv2_m_21k', pretrained=pretrained, **kwargs)
1977+
model = _gen_efficientnetv2_m('tf_efficientnetv2_m_in21k', pretrained=pretrained, **kwargs)
19781978
return model
19791979

19801980

19811981
@register_model
1982-
def tf_efficientnetv2_l_21k(pretrained=False, **kwargs):
1982+
def tf_efficientnetv2_l_in21k(pretrained=False, **kwargs):
19831983
""" EfficientNet-V2 Large w/ ImageNet-21k pretrained weights. Tensorflow compatible variant
19841984
"""
19851985
kwargs['bn_eps'] = BN_EPS_TF_DEFAULT
19861986
kwargs['pad_type'] = 'same'
1987-
model = _gen_efficientnetv2_l('tf_efficientnetv2_l_21k', pretrained=pretrained, **kwargs)
1987+
model = _gen_efficientnetv2_l('tf_efficientnetv2_l_in21k', pretrained=pretrained, **kwargs)
19881988
return model
19891989

19901990

0 commit comments

Comments
 (0)