@@ -332,28 +332,28 @@ def _cfg(url='', **kwargs):
332332 mean = (0.5 , 0.5 , 0.5 ), std = (0.5 , 0.5 , 0.5 ),
333333 input_size = (3 , 384 , 384 ), test_input_size = (3 , 480 , 480 ), pool_size = (12 , 12 ), crop_pct = 1.0 ),
334334
335- 'tf_efficientnetv2_s_21ft1k ' : _cfg (
335+ 'tf_efficientnetv2_s_in21ft1k ' : _cfg (
336336 url = 'https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-effv2-weights/tf_efficientnetv2_s_21ft1k-d7dafa41.pth' ,
337337 mean = (0.5 , 0.5 , 0.5 ), std = (0.5 , 0.5 , 0.5 ),
338338 input_size = (3 , 300 , 300 ), test_input_size = (3 , 384 , 384 ), pool_size = (10 , 10 ), crop_pct = 1.0 ),
339- 'tf_efficientnetv2_m_21ft1k ' : _cfg (
339+ 'tf_efficientnetv2_m_in21ft1k ' : _cfg (
340340 url = 'https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-effv2-weights/tf_efficientnetv2_m_21ft1k-bf41664a.pth' ,
341341 mean = (0.5 , 0.5 , 0.5 ), std = (0.5 , 0.5 , 0.5 ),
342342 input_size = (3 , 384 , 384 ), test_input_size = (3 , 480 , 480 ), pool_size = (12 , 12 ), crop_pct = 1.0 ),
343- 'tf_efficientnetv2_l_21ft1k ' : _cfg (
343+ 'tf_efficientnetv2_l_in21ft1k ' : _cfg (
344344 url = 'https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-effv2-weights/tf_efficientnetv2_l_21ft1k-60127a9d.pth' ,
345345 mean = (0.5 , 0.5 , 0.5 ), std = (0.5 , 0.5 , 0.5 ),
346346 input_size = (3 , 384 , 384 ), test_input_size = (3 , 480 , 480 ), pool_size = (12 , 12 ), crop_pct = 1.0 ),
347347
348- 'tf_efficientnetv2_s_21k ' : _cfg (
348+ 'tf_efficientnetv2_s_in21k ' : _cfg (
349349 url = 'https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-effv2-weights/tf_efficientnetv2_s_21k-6337ad01.pth' ,
350350 mean = (0.5 , 0.5 , 0.5 ), std = (0.5 , 0.5 , 0.5 ), num_classes = 21843 ,
351351 input_size = (3 , 300 , 300 ), test_input_size = (3 , 384 , 384 ), pool_size = (10 , 10 ), crop_pct = 1.0 ),
352- 'tf_efficientnetv2_m_21k ' : _cfg (
352+ 'tf_efficientnetv2_m_in21k ' : _cfg (
353353 url = 'https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-effv2-weights/tf_efficientnetv2_m_21k-361418a2.pth' ,
354354 mean = (0.5 , 0.5 , 0.5 ), std = (0.5 , 0.5 , 0.5 ), num_classes = 21843 ,
355355 input_size = (3 , 384 , 384 ), test_input_size = (3 , 480 , 480 ), pool_size = (12 , 12 ), crop_pct = 1.0 ),
356- 'tf_efficientnetv2_l_21k ' : _cfg (
356+ 'tf_efficientnetv2_l_in21k ' : _cfg (
357357 url = 'https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-effv2-weights/tf_efficientnetv2_l_21k-91a19ec9.pth' ,
358358 mean = (0.5 , 0.5 , 0.5 ), std = (0.5 , 0.5 , 0.5 ), num_classes = 21843 ,
359359 input_size = (3 , 384 , 384 ), test_input_size = (3 , 480 , 480 ), pool_size = (12 , 12 ), crop_pct = 1.0 ),
@@ -1929,62 +1929,62 @@ def tf_efficientnetv2_l(pretrained=False, **kwargs):
19291929
19301930
19311931@register_model
1932- def tf_efficientnetv2_s_21ft1k (pretrained = False , ** kwargs ):
1932+ def tf_efficientnetv2_s_in21ft1k (pretrained = False , ** kwargs ):
19331933 """ EfficientNet-V2 Small. Pretrained on ImageNet-21k, fine-tuned on 1k. Tensorflow compatible variant
19341934 """
19351935 kwargs ['bn_eps' ] = BN_EPS_TF_DEFAULT
19361936 kwargs ['pad_type' ] = 'same'
1937- model = _gen_efficientnetv2_s ('tf_efficientnetv2_s_21ft1k ' , pretrained = pretrained , ** kwargs )
1937+ model = _gen_efficientnetv2_s ('tf_efficientnetv2_s_in21ft1k ' , pretrained = pretrained , ** kwargs )
19381938 return model
19391939
19401940
19411941@register_model
1942- def tf_efficientnetv2_m_21ft1k (pretrained = False , ** kwargs ):
1942+ def tf_efficientnetv2_m_in21ft1k (pretrained = False , ** kwargs ):
19431943 """ EfficientNet-V2 Medium. Pretrained on ImageNet-21k, fine-tuned on 1k. Tensorflow compatible variant
19441944 """
19451945 kwargs ['bn_eps' ] = BN_EPS_TF_DEFAULT
19461946 kwargs ['pad_type' ] = 'same'
1947- model = _gen_efficientnetv2_m ('tf_efficientnetv2_m_21ft1k ' , pretrained = pretrained , ** kwargs )
1947+ model = _gen_efficientnetv2_m ('tf_efficientnetv2_m_in21ft1k ' , pretrained = pretrained , ** kwargs )
19481948 return model
19491949
19501950
19511951@register_model
1952- def tf_efficientnetv2_l_21ft1k (pretrained = False , ** kwargs ):
1952+ def tf_efficientnetv2_l_in21ft1k (pretrained = False , ** kwargs ):
19531953 """ EfficientNet-V2 Large. Pretrained on ImageNet-21k, fine-tuned on 1k. Tensorflow compatible variant
19541954 """
19551955 kwargs ['bn_eps' ] = BN_EPS_TF_DEFAULT
19561956 kwargs ['pad_type' ] = 'same'
1957- model = _gen_efficientnetv2_l ('tf_efficientnetv2_l_21ft1k ' , pretrained = pretrained , ** kwargs )
1957+ model = _gen_efficientnetv2_l ('tf_efficientnetv2_l_in21ft1k ' , pretrained = pretrained , ** kwargs )
19581958 return model
19591959
19601960
19611961@register_model
1962- def tf_efficientnetv2_s_21k (pretrained = False , ** kwargs ):
1962+ def tf_efficientnetv2_s_in21k (pretrained = False , ** kwargs ):
19631963 """ EfficientNet-V2 Small w/ ImageNet-21k pretrained weights. Tensorflow compatible variant
19641964 """
19651965 kwargs ['bn_eps' ] = BN_EPS_TF_DEFAULT
19661966 kwargs ['pad_type' ] = 'same'
1967- model = _gen_efficientnetv2_s ('tf_efficientnetv2_s_21k ' , pretrained = pretrained , ** kwargs )
1967+ model = _gen_efficientnetv2_s ('tf_efficientnetv2_s_in21k ' , pretrained = pretrained , ** kwargs )
19681968 return model
19691969
19701970
19711971@register_model
1972- def tf_efficientnetv2_m_21k (pretrained = False , ** kwargs ):
1972+ def tf_efficientnetv2_m_in21k (pretrained = False , ** kwargs ):
19731973 """ EfficientNet-V2 Medium w/ ImageNet-21k pretrained weights. Tensorflow compatible variant
19741974 """
19751975 kwargs ['bn_eps' ] = BN_EPS_TF_DEFAULT
19761976 kwargs ['pad_type' ] = 'same'
1977- model = _gen_efficientnetv2_m ('tf_efficientnetv2_m_21k ' , pretrained = pretrained , ** kwargs )
1977+ model = _gen_efficientnetv2_m ('tf_efficientnetv2_m_in21k ' , pretrained = pretrained , ** kwargs )
19781978 return model
19791979
19801980
19811981@register_model
1982- def tf_efficientnetv2_l_21k (pretrained = False , ** kwargs ):
1982+ def tf_efficientnetv2_l_in21k (pretrained = False , ** kwargs ):
19831983 """ EfficientNet-V2 Large w/ ImageNet-21k pretrained weights. Tensorflow compatible variant
19841984 """
19851985 kwargs ['bn_eps' ] = BN_EPS_TF_DEFAULT
19861986 kwargs ['pad_type' ] = 'same'
1987- model = _gen_efficientnetv2_l ('tf_efficientnetv2_l_21k ' , pretrained = pretrained , ** kwargs )
1987+ model = _gen_efficientnetv2_l ('tf_efficientnetv2_l_in21k ' , pretrained = pretrained , ** kwargs )
19881988 return model
19891989
19901990
0 commit comments