Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

RuntimeError: Input type (float) and bias type (c10::Half) should be the same #3290

Closed
2 of 4 tasks
PABannier opened this issue Dec 11, 2024 · 2 comments
Closed
2 of 4 tasks

Comments

@PABannier
Copy link

System Info

Ubuntu 22.04.5 LTS

Python 3.10

dependencies = [
    "accelerate>=1.2.0",
    "deepspeed>=0.16.1",
    "numpy>=2.2.0",
    "setuptools>=75.6.0",
    "torch>=2.5.1",
    "transformers>=4.47.0",
]

Information

  • The official example scripts
  • My own modified scripts

Tasks

  • One of the scripts in the examples/ folder of Accelerate or an officially supported no_trainer script in the examples folder of the transformers repo (such as run_no_trainer_glue.py)
  • My own task or dataset (give details below)

Reproduction

  1. Copy this dummy training script:
import torch
import torch.nn as nn
from torch.utils.data import Dataset, DataLoader
from accelerate import Accelerator
from pathlib import Path


# Dummy dataset that generates random data
class DummyDataset(Dataset):
    def __init__(self, size=1000):
        self.size = size

    def __len__(self):
        return self.size

    def __getitem__(self, idx):
        # Generate random image (3 channels, 64x64) and random label
        image = torch.randn(3, 64, 64).float()
        label = torch.randint(0, 2, (1,))[0]
        return image, label

# Simple CNN model
class DummyModel(nn.Module):
    def __init__(self):
        super().__init__()
        self.features = nn.Sequential(
            nn.Conv2d(3, 16, kernel_size=3, padding=1),
            nn.ReLU(),
            nn.MaxPool2d(2),
            nn.Conv2d(16, 32, kernel_size=3, padding=1),
            nn.ReLU(),
            nn.MaxPool2d(2),
        )
        self.classifier = nn.Sequential(
            nn.Flatten(),
            nn.Linear(32 * 16 * 16, 64),
            nn.ReLU(),
            nn.Linear(64, 2)
        )

    def forward(self, x):
        x = self.features(x)
        x = self.classifier(x)
        return x

def main():
    # Initialize accelerator
    accelerator = Accelerator()

    # Create model and move to device
    model = DummyModel()

    # Create datasets and dataloaders
    train_dataset = DummyDataset(size=1000)
    train_loader = DataLoader(
        train_dataset,
        batch_size=32,
        shuffle=True,
        num_workers=2
    )

    # Setup training components
    criterion = nn.CrossEntropyLoss()
    optimizer = torch.optim.Adam(model.parameters(), lr=0.001)

    # Prepare for distributed training
    model, optimizer, train_loader = accelerator.prepare(
        model, optimizer, train_loader
    )

    # Training loop
    num_epochs = 5

    for epoch in range(num_epochs):
        model.train()
        total_loss = 0

        for batch_idx, (images, labels) in enumerate(train_loader):
            optimizer.zero_grad()

            outputs = model(images)
            loss = criterion(outputs, labels)

            accelerator.backward(loss)
            optimizer.step()

            total_loss += loss.item()

            if batch_idx % 10 == 0 and accelerator.is_main_process:
                print(f'Epoch: {epoch+1}/{num_epochs}, Batch: {batch_idx}, Loss: {loss.item():.4f}')

        if accelerator.is_main_process:
            avg_loss = total_loss / len(train_loader)
            print(f'Epoch: {epoch+1}/{num_epochs}, Average Loss: {avg_loss:.4f}')

if __name__ == "__main__":
    main()
  1. Copy this DeepSpeed Zero3 configuration file:
{
    "fp16": {
        "enabled": true,
        "loss_scale": 0,
        "loss_scale_window": 1000,
        "initial_scale_power": 12,
        "hysteresis": 2,
        "min_loss_scale": 1
    },
    "zero_optimization": {
        "stage": 3,
        "offload_optimizer": {
            "device": "cpu",
            "pin_memory": true
        },
        "offload_param": {
            "device": "cpu",
            "pin_memory": true
        },
        "overlap_comm": true,
        "contiguous_gradients": true,
        "reduce_bucket_size": "500000000",
        "stage3_prefetch_bucket_size": "50000000",
        "stage3_param_persistence_threshold": "100000",
        "sub_group_size": 1e9,
        "stage3_max_live_parameters": 1e9,
        "stage3_max_reuse_distance": 1e9,
        "stage3_gather_16bit_weights_on_model_save": true
    },
    "gradient_clipping": "auto",
    "steps_per_print": 2000,
    "train_batch_size": "auto",
    "train_micro_batch_size_per_gpu": "auto",
    "wall_clock_breakdown": false
}
  1. Copy this Accelerate config file:
compute_environment: LOCAL_MACHINE
debug: false
deepspeed_config:
  deepspeed_config_file: zero3_offload_config_accelerate.json
  zero3_init_flag: false
distributed_type: DEEPSPEED
downcast_bf16: "no"
enable_cpu_affinity: false
machine_rank: 0
main_training_function: main
num_machines: 1
num_processes: 4
rdzv_backend: static
same_network: true
tpu_env: []
tpu_use_cluster: false
tpu_use_sudo: false
use_cpu: false
  1. Run:
uv run accelerate launch --config_file default.yaml ./dummy_train.py

I end up with this error: [rank0]: RuntimeError: Input type (float) and bias type (c10::Half) should be the same. I can fix it by explicitly casting the input tensor with half() but Accelerate/DeepSpeed should deal with mixed precision training, right?

Am I doing something wrong?

Expected behavior

Accelerate automatically handles mixed precision training, and correctly casts the input and weights to the correct type.

@PABannier PABannier changed the title [rank0]: RuntimeError: Input type (float) and bias type (c10::Half) should be the same RuntimeError: Input type (float) and bias type (c10::Half) should be the same Dec 11, 2024
Copy link

This issue has been automatically marked as stale because it has not had recent activity. If you think this still needs to be addressed please comment on this thread.

Please note that issues that do not follow the contributing guidelines are likely to be ignored.

@PABannier
Copy link
Author

For future reference, I solved my problem by explicitly calling the autocast context manager:

with torch.autocast(device_type="cuda"):
    outputs = self.model(stacked_images)

Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment
Labels
None yet
Projects
None yet
Development

No branches or pull requests

1 participant