-
Notifications
You must be signed in to change notification settings - Fork 3
/
Copy pathutils.py
146 lines (125 loc) · 3.8 KB
/
utils.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
from pathlib import Path
from random import shuffle
def check_status(stage):
if stage < 1001:
return True
return False
def res2tab(res: dict, n_palce=4):
def dy_str(s, l):
return str(s) + ' '*(l-len(str(s)))
min_size = 8
k_str, v_str = '', ''
for k, v in res.items():
cur_len = max(min_size, len(k)+2)
k_str += dy_str(f'{k}', cur_len) + '| '
v_str += dy_str(f'{v:.4}', cur_len) + '| '
return k_str, v_str
class AverageMeter:
def __init__(self):
self.value = None
self.avg = None
self.sum = None
self.count = None
self.reset()
def reset(self):
self.value = 0
self.avg = 0
self.sum = 0
self.count = 0
def update(self, value, n=1):
self.value = value
self.sum += value * n
self.count += n
self.avg = self.sum / self.count
################################### metric #######################################
import scipy
import scipy.spatial
import numpy as np
def acc_score(y_true, y_pred, average="micro"):
if isinstance(y_true, list):
y_true = np.array(y_true)
if isinstance(y_pred, list):
y_pred = np.array(y_pred)
if average == "micro":
# overall
return np.mean(y_true == y_pred)
elif average == "macro":
# average of each class
cls_acc = []
for cls_idx in np.unique(y_true):
cls_acc.append(np.mean(y_pred[y_true==cls_idx]==cls_idx))
return np.mean(np.array(cls_acc))
else:
raise NotImplementedError
def map_score(dist_mat, lbl_a, lbl_b, metric='cosine'):
n_a, n_b = dist_mat.shape
s_idx = dist_mat.argsort()
res = []
for i in range(n_a):
order = s_idx[i]
p = 0.0
r = 0.0
for j in range(n_b):
if lbl_a[i] == lbl_b[order[j]]:
r += 1
p += (r / (j + 1))
if r > 0:
res.append(p/r)
else:
res.append(0)
return np.mean(res)
def map_score(dist_mat, lbl_a, lbl_b):
n_a, n_b = dist_mat.shape
s_idx = dist_mat.argsort()
res = []
for i in range(n_a):
order = s_idx[i]
p = 0.0
r = 0.0
for j in range(n_b):
if lbl_a[i] == lbl_b[order[j]]:
r += 1
p += (r / (j + 1))
if r > 0:
res.append(p/r)
else:
res.append(0)
return np.mean(res)
def nn_score(dist_mat, lbl_a, lbl_b):
n_a, n_b = dist_mat.shape
s_idx = dist_mat.argsort()
res = []
for i in range(n_a):
order = s_idx[i]
if lbl_a[i] == lbl_b[order[0]]:
res.append(1)
else:
res.append(0)
return np.mean(res)
def ndcg_score(dist_mat, lbl_a, lbl_b, k=100):
n_a, n_b = dist_mat.shape
s_idx = dist_mat.argsort()
res = []
for i in range(n_a):
order = s_idx[i]
idcg = np.cumsum(1.0 / np.log2(np.arange(2, n_b + 2)))
dcg = np.cumsum([1.0/np.log2(idx+2) if lbl_a[i] == lbl_b[item] else 0.0 for idx, item in enumerate(order)])
ndcg = (dcg/idcg)[k-1]
res.append(ndcg)
return np.mean(res)
def anmrr_score(dist_mat, lbl_a, lbl_b):
# NG: number of ground truth images (target images) per query (vector)
n_a, n_b = dist_mat.shape
lbl_a, lbl_b = np.array(lbl_a), np.array(lbl_b)
NG = np.array([(lbl_a[i]==lbl_b).sum() for i in range(lbl_a.shape[0])])
s_idx = dist_mat.argsort()
res = []
for i in range(n_a):
cur_NG = NG[i]
K = min(4*cur_NG, 2*NG.max())
order = s_idx[i]
ARR = np.sum([(idx+1)/cur_NG if lbl_a[i] == lbl_b[order[idx]] else (K+1)/cur_NG for idx in range(cur_NG)])
MRR = ARR - 0.5*cur_NG - 0.5
NMRR = MRR / (K - 0.5*cur_NG + 0.5)
res.append(NMRR)
return np.mean(res)