-
Notifications
You must be signed in to change notification settings - Fork 3
/
Copy pathuni_eval.py
150 lines (129 loc) · 5.64 KB
/
uni_eval.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
import numpy as np
import os
import torch
import torch.nn as nn
import torch.nn.functional as F
from torch.autograd import Variable
import torchvision.models as models
import argparse
import torch.optim as optim
import time
from torch.utils.data import DataLoader
from models.CREMA.basic_model import AudioNet, VisualNet
from loaders.CramedDataset import CramedDataset
from loaders.AVEDataset import AVEDataset
import time
from utils import res2tab, acc_score, map_score
os.environ["CUDA_VISIBLE_DEVICES"] = '6'
device = torch.device("cuda")
def parse_args():
parser = argparse.ArgumentParser(description="Uni-modal-evaluation")
parser.add_argument('--dataset', type=str, default='AVE')
parser.add_argument('--dataset_path',type=str, default='/data/huacong/AVE_Dataset')
parser.add_argument('--modality',type=str,default='visual') # visual or audio
parser.add_argument('--n_class',type=int, default=28)
parser.add_argument('--batch_size',type=int,default=64)
parser.add_argument('--max_epochs',type=int,default=100)
parser.add_argument('--emb',type=int,default=512)
parser.add_argument('--uni_ckpt_path',type=str,default='/data/huacong/MN40/grownet/cache/Trained_ckpt/Trained_Common_Space_AVE_boost_4_4_fts_common_space_fixed_mask_lr_0.01_0.01_br__GA_mse_4.0_1.0_2/uni_encoder_of_best_model_stage_34_acc_0.7135416666666666.pth')
args = parser.parse_args()
return args
class Classifier(nn.Module):
def __init__(self, input_dim=512, output_dim=40):
super(Classifier, self).__init__()
self.fc = nn.Linear(input_dim, output_dim)
def forward(self, fts):
output = self.fc(fts)
return output
def test(args, model, cls, test_dataloader, epoch):
print(f"Epoch {epoch}, Testing...")
all_lbls, all_preds = [], []
st = time.time()
for i, (spec, image, label) in enumerate(test_dataloader):
spec = spec.to(device)
image = image.to(device)
label = label.to(device)
with torch.no_grad():
if args.modality == "audio":
_, gf = model(spec.unsqueeze(1).float(), global_ft = True)
else:
_, gf = model(image.float(), global_ft = True)
out = cls(gf)
out = torch.as_tensor(out, dtype=torch.float32).cuda()
_ , preds = torch.max(out, 1)
all_preds.extend(preds.squeeze().detach().cpu().numpy().tolist())
all_lbls.extend(label.squeeze().detach().cpu().numpy().tolist())
acc_mi = acc_score(all_lbls, all_preds, average="micro")
acc_ma = acc_score(all_lbls, all_preds, average="macro")
print(f"Stage: {epoch}, Time: {time.time()-st:.4f}s")
res = {
"overall acc": acc_mi,
"meanclass acc": acc_ma,
}
tab_head, tab_data = res2tab(res)
print(tab_head)
print(tab_data)
print("This Stage Done!\n")
return acc_mi
def main(args):
if args.dataset == 'CREMAD':
train_data = CramedDataset(dataset_dir = args.dataset_path, mode="train")
test_data = CramedDataset(dataset_dir = args.dataset_path, mode="test")
elif args.dataset == 'AVE':
train_data = AVEDataset(dataset_dir = args.dataset_path, mode="train")
test_data = AVEDataset(dataset_dir = args.dataset_path, mode='test')
else:
raise NotImplementedError('Incorrect dataset name {}! '
'Only support VGGSound and CREMA-D for now!'.format(args.dataset))
train_dataloader = DataLoader(train_data, batch_size = args.batch_size,
shuffle=True, num_workers=32, pin_memory=True, drop_last=True)
test_dataloader = DataLoader(test_data, batch_size = args.batch_size,
shuffle=False, num_workers=32, pin_memory=True, drop_last=True)
##### uni-modality
uni_ckpt = torch.load(args.uni_ckpt_path)
if args.modality == "audio":
model = AudioNet(dataset = args.dataset)
pretrained_dict = uni_ckpt['model_audio']
model_dict = model.state_dict()
pretrained_dict = { k: v for k, v in pretrained_dict.items() if not 'fc' in k}
model_dict.update(pretrained_dict)
model.load_state_dict(model_dict)
else:
model = VisualNet(dataset = args.dataset)
pretrained_dict = uni_ckpt['model_visual']
model_dict = model.state_dict()
pretrained_dict = { k: v for k, v in pretrained_dict.items() if not 'fc' in k}
model_dict.update(pretrained_dict)
model.load_state_dict(model_dict)
model.cuda()
model.eval()
cls = Classifier(input_dim = args.emb, output_dim = args.n_class)
cls.cuda()
optimizer = optim.SGD(cls.parameters(), 0.01, momentum=0.9, weight_decay=1e-4)
ce_criterion = nn.CrossEntropyLoss()
for epoch in range(args.max_epochs):
cls.train()
for i, data_label in enumerate(train_dataloader):
spec, image, lbl = data_label
spec = spec.cuda()
spec = spec.unsqueeze(1).float()
image = image.cuda()
image = image.float()
lbl = lbl.cuda()
with torch.no_grad():
if args.modality == "audio":
_, gf = model(spec,global_ft = True)
else:
_, gf = model(image,global_ft = True)
out = cls(gf)
loss = ce_criterion(out,lbl)
optimizer.zero_grad()
loss.backward()
optimizer.step()
print(f"Results from epoch = {epoch}" + '\n')
model.eval()
cls.eval()
test(args, model, cls, test_dataloader, epoch)
if __name__ == "__main__":
args = parse_args()
main(args)