-
Notifications
You must be signed in to change notification settings - Fork 3
/
Copy pathtrain.py
463 lines (371 loc) · 17.1 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
## shared package
import numpy as np
import os
import torch
import torch.nn as nn
import torch.nn.functional as F
from torch.autograd import Variable
import torchvision.models as models
import argparse
import torch.optim as optim
import time
import json
import scipy
import random
from torch.utils.data import DataLoader
import sys
import torch.nn.functional as F
from sklearn.preprocessing import normalize
from scipy.spatial.distance import cdist
import warnings
from pathlib import Path
## models
### CREMA-D,AVE
from models.CREMA.basic_model import AudioNet, VisualNet
### ModelNet40
from models.MView40.image import FeatureNet
## dataloader
from loaders.CramedDataset import CramedDataset
from loaders.AVEDataset import AVEDataset
from loaders.MView40.train_dataset import MView_train
from loaders.MView40.test_dataset import MView_test
#from loaders.MSADataset import MSADataset
##### Shared import
from models.dynamic_net import DynamicNet
from schedule import schedule_model
from torch.utils.tensorboard import SummaryWriter
from utils import AverageMeter, res2tab, acc_score, map_score
from utils import check_status
import argparse
# os environment
os.environ["CUDA_VISIBLE_DEVICES"] = '0'
device = torch.device("cuda")
def parse_args():
parser = argparse.ArgumentParser(description="ICML-2024-ReconBoost")
parser.add_argument('--dataset', type=str, default='CREMAD')
parser.add_argument('--dataset_path',type=str, default='/data/huacong/CREMA/data')
parser.add_argument('--n_class',type=int, default=6)
parser.add_argument('--batch_size',type=int,default=64)
parser.add_argument('--boost_rate',type=float,default=1.0)
parser.add_argument('--n_worker',type=int,default=8)
parser.add_argument('--epochs_per_stage',type=int,default=4)
parser.add_argument('--correct_epoch',type=int,default=4)
parser.add_argument('--common_space',type=bool,default=True)
parser.add_argument('--use_lr',type=bool,default=True) ##是否调整learning rate
parser.add_argument('--m_lr',type=float,default=0.01)
parser.add_argument('--e_lr',type=float,default=0.01)
parser.add_argument('--use_br',type=bool,default=True)
parser.add_argument('--use_pretrain',action="store_true")
parser.add_argument('--m1ckpt', type=str, default = '/data/huacong/CREMA/OGM-GE/ckpt/CREMAD_audio_encoder_of_best_model_epoch_21_acc_0.5667613636363636.pth')
parser.add_argument('--m2ckpt', type=str, default = '/data/huacong/CREMA/OGM-GE/ckpt/CREMAD_visual_encoder_of_best_model_epoch_87_acc_0.5198863636363636.pth')
parser.add_argument('--use_ga',type=bool,default=True)
parser.add_argument('--weight1',type=float,default=5.0)
parser.add_argument('--weight2',type=float,default=1.0)
parser.add_argument('--alpha',type=float,default=0.5)
#### save dir & tensorboard dir
parser.add_argument('--ckpt_dir',type=str,default='/data/huacong/MN40/grownet/cache/ckpt')
parser.add_argument('--use_tensorboard',type=bool,default=True)
parser.add_argument('--tensorboard_dir',type=str,default='/data/huacong/MN40/grownet/cache/tensorboard')
################# test_mode ########################
parser.add_argument('--ensemble_ckpt_path',type=str,default='')
parser.add_argument('--uni_ckpt_path',type=str,default='')
args = parser.parse_args()
return args
def setup_seed():
seed = 0
torch.manual_seed(seed)
torch.cuda.manual_seed(seed)
random.seed(seed)
print(f"random seed: {seed}")
def init_model():
return random.random()
def init_pretrain(model,ckpt):
model_ckpt = torch.load(ckpt)
pretrained_dict = model_ckpt['model']
model.load_state_dict(pretrained_dict)
return model
def test(args,data_loader, net_ensemble, stage = 0):
print(f"Stage {stage}, Testing...")
all_lbls, all_preds = [], []
st = time.time()
for i, data_label in enumerate(data_loader):
if args.dataset == 'CREMAD' or args.dataset == 'AVE':
spec, image, lbl = data_label
spec = spec.cuda()
spec = spec.unsqueeze(1).float()
image = image.to(device)
image = image.float()
lbl = lbl.cuda()
data = (spec,image)
elif args.dataset == 'MView40':
img_1, img_2, lbl = data_label
img_1 = img_1.cuda()
img_2 = img_2.cuda()
lbl = torch.squeeze(lbl.cuda())
data = (img_1, img_2)
out_join = net_ensemble.forward(data)
out_join = F.softmax(torch.as_tensor(out_join, dtype=torch.float32).cuda(),dim=1)
_ , preds = torch.max(out_join, 1)
all_preds.extend(preds.squeeze().detach().cpu().numpy().tolist())
all_lbls.extend(lbl.squeeze().detach().cpu().numpy().tolist())
print(len(all_lbls), len(all_preds))
acc_mi = acc_score(all_lbls, all_preds, average="micro")
acc_ma = acc_score(all_lbls, all_preds, average="macro")
print(f"Stage: {stage}, Time: {time.time()-st:.4f}s")
res = {
"overall acc": acc_mi,
"meanclass acc": acc_ma
}
tab_head, tab_data = res2tab(res)
print(tab_head)
print(tab_data)
print("This Stage Done!\n")
return acc_mi
def main(args,this_task):
setup_seed()
### tensorboard
writer_path = os.path.join(args.tensorboard_dir,this_task)
if not os.path.exists(writer_path):
os.makedirs(writer_path)
writer = SummaryWriter(writer_path)
ckpt_path = os.path.join(args.ckpt_dir,this_task)
if not os.path.exists(ckpt_path):
os.makedirs(ckpt_path)
## dataset and model
if args.dataset == 'CREMAD': # audio + visual
train_data = CramedDataset(dataset_dir=args.dataset_path,mode="train")
test_data = CramedDataset(dataset_dir=args.dataset_path,mode="test")
#### define models
model_audio = AudioNet(dataset='CREMAD')
model_visual = VisualNet(dataset='CREMAD')
audio_ckpt_path = args.m1ckpt
visual_ckpt_path = args.m2ckpt
# pre-trained uni-modal model can help converge
if args.use_pretrain:
model_audio = init_pretrain(model_audio,audio_ckpt_path)
model_visual = init_pretrain(model_visual,visual_ckpt_path)
model_audio.cuda()
model_visual.cuda()
elif args.dataset == 'AVE':
train_data = AVEDataset(dataset_dir=args.dataset_path,mode="train")
test_data = AVEDataset(dataset_dir=args.dataset_path,mode='test')
model_audio = AudioNet(dataset='AVE')
model_visual = VisualNet(dataset='AVE')
audio_ckpt_path = args.m1ckpt
visual_ckpt_path = args.m2ckpt
if args.use_pretrain:
model_audio = init_pretrain(model_audio,audio_ckpt_path)
model_visual = init_pretrain(model_visual,visual_ckpt_path)
model_audio.cuda()
model_visual.cuda()
elif args.dataset == 'MView40':
train_data = MView_train(dataset_dir=args.dataset_path, phase="train")
test_data = MView_test(dataset_dir=args.dataset_path, phase="test")
model_img1 = FeatureNet(output_dim=args.n_class)
model_img1 = nn.DataParallel(model_img1)
model_img2 = FeatureNet(output_dim=args.n_class)
model_img2 = nn.DataParallel(model_img2)
model_img1.cuda()
model_img2.cuda()
img_ckpt_path = args.m1ckpt
if args.use_pretrain:
model_img1.load_state_dict(torch.load(img_ckpt_path))
model_img2.load_state_dict(torch.load(img_ckpt_path))
train_loader = DataLoader(dataset=train_data,
batch_size=args.batch_size,
shuffle=True,
num_workers=args.n_worker,
drop_last=True)
test_loader = DataLoader(dataset=test_data,
batch_size=args.batch_size,
shuffle=False,
num_workers=args.n_worker,
drop_last=True)
net_ensemble = DynamicNet(
c0 = init_model(),
lr = args.boost_rate,
common_space = args.common_space,
dataset = args.dataset,
n_class= args.n_class)
if args.use_pretrain:
if args.dataset == 'AVE' or args.dataset == 'CREMAD':
net_ensemble.add(model = model_audio,model_name='audio')
net_ensemble.add(model = model_visual,model_name='visual')
elif args.dataset == 'MView40':
net_ensemble.add(model = model_img1, model_name='img_1')
net_ensemble.add(model = model_img2, model_name='img_2')
ce_criterion = nn.CrossEntropyLoss()
mse_criterion = nn.MSELoss()
stage = 0
models_name = []
best_acc = 0.0
while check_status(stage):
model_name = schedule_model(stage=stage,dataset=args.dataset)
print(f"Stage {stage}, pick {model_name} modality........")
if stage == 0:
modality_lr = args.m_lr
ensemble_lr = args.e_lr
if args.dataset == 'CREMAD' or args.dataset == 'AVE':
if model_name == 'audio':
model = model_audio ## current model
pre_model = model_visual
pre_model_name = 'visual'
else: #model_name == 'visual':
model = model_visual
pre_model = model_audio
pre_model_name = 'audio'
elif args.dataset == 'MView40':
if model_name == 'img_1':
model = model_img1
pre_model = model_img2
pre_model_name = 'img_2'
elif model_name == 'img_2':
model = model_img2
pre_model = model_img1
pre_model_name = 'img_1'
if args.common_space:
model.fc = net_ensemble.head
net_ensemble.to_train()
ce_loss = []
# phase 1
optimizer = optim.SGD(model.parameters(), lr=modality_lr, momentum=0.9, weight_decay=5e-4)
net_ensemble.to_train()
stage_loss = []
stage_ga_loss = []
ce_loss = []
for epoch in range(args.epochs_per_stage):
for i, data_label in enumerate(train_loader):
if args.dataset == 'CREMAD' or args.dataset == 'AVE':
spec, image, lbl = data_label
spec = spec.cuda()
spec = spec.unsqueeze(1).float()
image = image.cuda()
image = image.float()
lbl = lbl.cuda()
data = (spec, image)
model_input_map = {
'audio': spec,
'visual': image
}
elif args.dataset == 'MView40':
img_1, img_2, lbl = data_label
img_1 = img_1.cuda()
img_2 = img_2.cuda()
lbl = torch.squeeze(lbl.cuda())
data = (img_1, img_2)
model_input_map = {
'img_1': img_1,
'img_2': img_2
}
out_join = net_ensemble.forward(data=data, mask_model=model_name) ## mask_model = model_name global_ft: true or false
if not args.use_pretrain and stage == 0: # initial
out_join = torch.as_tensor(out_join, dtype=torch.float32).cuda().view(-1, 1).expand(args.batch_size,1)
else:
out_join = torch.as_tensor(out_join, dtype=torch.float32).cuda()
out_obj = model(model_input_map[model_name])
target = torch.zeros(args.batch_size,args.n_class).cuda().scatter_(1,lbl.view(-1,1),1)
boosting_loss = - args.weight1 * (target * out_obj.log_softmax(1)).mean(-1) \
+ args.weight2 * (target*out_join.detach().softmax(1) * out_obj.log_softmax(1)).mean(-1)
model.zero_grad()
if args.use_ga:
if stage == 0:
loss = boosting_loss
else:
pre_out_obj = pre_model(model_input_map[pre_model_name])
ga_loss = mse_criterion(out_obj.detach().softmax(1), pre_out_obj.detach().softmax(1)) ## ga loss
stage_ga_loss.append(ga_loss.mean().item())
loss = boosting_loss + args.alpha * ga_loss
loss.mean().backward()
else:
boosting_loss.mean().backward()
optimizer.step()
stage_loss.append(boosting_loss.mean().item())
stage_mean_loss = np.mean(stage_loss).item()
stage_mean_ga_loss = np.mean(stage_ga_loss).item()
models_name = net_ensemble.get_model_name()
print(f"There are {len(models_name)} modality(ies),{models_name}",)
print(f"Adding {model_name} modality.....")
net_ensemble.add(model,model_name)
## phase 2
if stage >= 0:
optimizer_correct = optim.SGD(net_ensemble.parameters(), ensemble_lr, momentum=0.9, weight_decay=5e-4)
for epoch in range(args.correct_epoch):
for i, data_label in enumerate(train_loader):
if args.dataset == 'CREMAD' or args.dataset == 'AVE':
spec, image, lbl = data_label
spec = spec.cuda()
spec = spec.unsqueeze(1).float()
image = image.cuda()
image = image.float()
lbl = lbl.cuda()
data = (spec, image)
model_input_map = {
'audio': spec,
'visual': image
}
elif args.dataset == 'MView40':
img_1, img_2, lbl = data_label
img_1 = img_1.cuda()
img_2 = img_2.cuda()
lbl = torch.squeeze(lbl.cuda())
data = (img_1, img_2)
model_input_map = {
'img_1': img_1,
'img_2': img_2
}
out = net_ensemble.forward_grad(data)
loss = ce_criterion(out, lbl)
optimizer_correct.zero_grad()
loss.backward()
ce_loss.append(loss.item())
optimizer_correct.step()
ce_mean_loss = np.mean(ce_loss).item()
print('Results from stage := ' + str(stage) + '\n')
net_ensemble.to_eval()
acc = test(args, test_loader, net_ensemble, stage)
###################### write in tensorboard
if args.use_tensorboard:
writer.add_scalar('Train/Boosting Loss', stage_mean_loss, stage)
writer.add_scalar('Train/GA Loss', stage_mean_ga_loss, stage)
writer.add_scalar('Train/Net Loss', ce_mean_loss, stage)
writer.add_scalar('Evaluation/ACC', acc, stage)
writer.add_scalar('Train/Modality_lr',modality_lr,stage)
writer.add_scalar('Train/Ensemble_lr',ensemble_lr,stage)
########## save model
if stage >= 3 and acc > best_acc:
best_acc = float(acc)
uni_model_name = 'uni_encoder_of_best_model_stage_{}_acc_{}.pth'.format(stage, acc)
if args.dataset == 'CREMAD' or args.dataset == 'AVE':
saved_dict = {'saved_stage':stage,
'acc':acc,
'model_audio':model_audio.state_dict(),
'model_visual':model_visual.state_dict()
}
elif args.dataset == 'MView40':
saved_dict = {'saved_stage':stage,
'acc':acc,
'model_audio':model_img1.state_dict(),
'model_visual':model_img2.state_dict()
}
uni_save_path = os.path.join(ckpt_path, uni_model_name)
torch.save(saved_dict, uni_save_path)
print('The uni encoder of the best model has been saved at {}'.format(uni_model_name))
ensemble_net_name = 'best_ensemble_net_stage_{}_acc_{}.path'.format(stage,acc)
ensemble_save_path = os.path.join(ckpt_path, ensemble_net_name)
net_ensemble.to_file(ensemble_save_path)
stage = stage + 1
if args.use_lr:
if args.dataset == 'AVE' and stage == 40:
modality_lr = modality_lr * 0.5
ensemble_lr = ensemble_lr * 0.5
if args.dataset == 'CREMAD' and stage !=0 and stage % 30 == 0:
modality_lr = modality_lr * 0.1
ensemble_lr = ensemble_lr * 0.1
if __name__ == "__main__":
args = parse_args()
print(args)
all_st = time.time()
this_task = f'{args.dataset}'
main(args=args,this_task=this_task)
all_sec = time.time()-all_st
print(f"Time cost: {all_sec//60//60} hours {all_sec//60%60} minutes!")