-
Notifications
You must be signed in to change notification settings - Fork 3
/
Copy patheval.py
136 lines (107 loc) · 4.41 KB
/
eval.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
## shared package
import os
import torch
import torch.nn as nn
import torch.nn.functional as F
import argparse
import random
from torch.utils.data import DataLoader
import torch.nn.functional as F
from sklearn.preprocessing import normalize
from scipy.spatial.distance import cdist
import warnings
from pathlib import Path
## models
### CREMA-D,AVE
from models.CREMA.basic_model import AudioNet, VisualNet
## dataloader
from loaders.CramedDataset import CramedDataset
from loaders.AVEDataset import AVEDataset
from models.dynamic_net import DynamicNet
from utils import res2tab, acc_score, map_score
from utils import check_status
import argparse
# os environment
os.environ["CUDA_VISIBLE_DEVICES"] = '6'
device = torch.device("cuda")
def setup_seed():
seed = 0
torch.manual_seed(seed)
torch.cuda.manual_seed(seed)
random.seed(seed)
print(f"random seed: {seed}")
def test(args, data_loader, net_ensemble, stage = 0):
print(f"Stage {stage}, Testing...")
all_lbls, all_preds = [], []
for i, data_label in enumerate(data_loader):
spec, image, lbl = data_label
spec = spec.cuda()
spec = spec.unsqueeze(1).float()
image = image.to(device)
image = image.float()
lbl = lbl.cuda()
data = (spec,image)
out_join = net_ensemble.forward(data = data)
out_join = F.softmax(torch.as_tensor(out_join, dtype=torch.float32).cuda(),dim=1)
_ , preds = torch.max(out_join, 1)
all_preds.extend(preds.squeeze().detach().cpu().numpy().tolist())
all_lbls.extend(lbl.squeeze().detach().cpu().numpy().tolist())
acc_mi = acc_score(all_lbls, all_preds, average="micro")
acc_ma = acc_score(all_lbls, all_preds, average="macro")
res = {
"overall acc": acc_mi,
"meanclass acc": acc_ma
}
tab_head, tab_data = res2tab(res)
print(tab_head)
print(tab_data)
print("This Stage Done!\n")
return acc_mi
def parse_args():
parser = argparse.ArgumentParser(description="ICML-2024-ReconBoost")
parser.add_argument('--dataset', type=str, default='AVE')
parser.add_argument('--dataset_path',type=str, default='/data/huacong/CREMA/data')
parser.add_argument('--n_class',type=int, default=28)
parser.add_argument('--batch_size',type=int,default=64)
parser.add_argument('--n_worker',type=int,default=8)
parser.add_argument('--ensemble_ckpt_path',type=str,default='/data/huacong/MN40/grownet/cache/Trained_ckpt/Trained_Common_Space_CREMAD_boost_4_4_fts_common_space_fixed_mask_lr_0.01_0.01_br__GA_mse_5.0_1.0_2/best_ensemble_net_stage_99_acc_0.8110795454545454.path')
parser.add_argument('--uni_ckpt_path',type=str,default='/data/huacong/MN40/grownet/cache/Trained_ckpt/Trained_Common_Space_CREMAD_boost_4_4_fts_common_space_fixed_mask_lr_0.01_0.01_br__GA_mse_5.0_1.0_2/uni_encoder_of_best_model_stage_99_acc_0.8110795454545454.pth')
args = parser.parse_args()
return args
if __name__ == "__main__":
args = parse_args()
setup_seed()
d = torch.load(args.ensemble_ckpt_path)
uni = torch.load(args.uni_ckpt_path)
net = DynamicNet(
c0 = d['c0'],
lr = d['lr'],
common_space = d['common_space'],
dataset = args.dataset,
n_class = args.n_class)
net.head.load_state_dict(d['head']) # d['common_space']=True
model_audio = AudioNet(dataset=args.dataset)
model_audio.cuda()
model_audio.fc = net.head
model_visual = VisualNet(dataset=args.dataset)
model_visual.cuda()
model_visual.fc = net.head
for _, m_name in enumerate(d['models_name']):
if m_name == 'audio':
model_audio.load_state_dict(uni['model_audio'])
net.add(model=model_audio,model_name='audio')
elif m_name == 'visual':
model_visual.load_state_dict(uni['model_visual'])
net.add(model=model_visual,model_name='visual')
if args.dataset == "CREMAD":
test_data = CramedDataset(dataset_dir=args.dataset_path,mode="test")
elif args.dataset == 'AVE':
test_data = AVEDataset(dataset_dir=args.dataset_path,mode='test')
## dataset
test_loader = DataLoader(dataset=test_data,
batch_size=args.batch_size,
shuffle=False,
num_workers=args.n_worker,
drop_last=True)
net.to_eval()
acc = test(args, test_loader,net,0)