-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathnonlinear_run.py
221 lines (174 loc) · 8.46 KB
/
nonlinear_run.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
# -*- encoding:utf8 -*-
import gym
import environments.environments as envs
from utils.config import Config
from experiment import Experiment
import shutil
from lockfile import LockFile
import torch
import sys
import numpy as np
import json
import os
import datetime
from collections import OrderedDict
import argparse
import subprocess
from parsers.main_parser import MainParser
from utils.main_utils import get_sweep_parameters, create_agent
#from torch.utils.tensorboard import SummaryWriter
class Unbuffered(object):
def __init__(self, stream):
self.stream = stream
def write(self, data):
self.stream.write(data)
self.stream.flush()
def writelines(self, datas):
self.stream.writelines(datas)
self.stream.flush()
def __getattr__(self, attr):
return getattr(self.stream, attr)
sys.stdout = Unbuffered(sys.stdout)
def main(args=None):
# parse arguments
print(torch.__version__)
parser = MainParser()
args = parser.parse_args(args)
arg_params = {
"write_plot": args.write_plot,
"write_log": args.write_log
}
# read env/agent json
with open(args.env_json, 'r') as env_dat:
env_json = json.load(env_dat, object_pairs_hook=OrderedDict)
with open(args.agent_json, 'r') as agent_dat:
agent_json = json.load(agent_dat, object_pairs_hook=OrderedDict)
# create save directory
save_dir = './{}/'.format(args.out_dir) + env_json['environment'] + '/'
if not os.path.exists(save_dir):
os.makedirs(save_dir, exist_ok=True)
if 'ContinuousMaze' in args.env_json or 'ContinuousWorld' in args.env_json:
f_lock = LockFile(os.path.join(save_dir,'f_lock.lock'))
with f_lock:
wd_name = os.path.splitext(os.path.basename(args.env_json))[0]
working_dir = os.path.join("environments/classes/GM",wd_name)
netsave_data_bdir = os.path.join(save_dir, 'saved_nets')
if not os.path.exists(netsave_data_bdir):
os.makedirs(netsave_data_bdir, exist_ok=True)
else:
netsave_data_bdir = None
# initialize env
if 'ContinuousMaze' in args.env_json or 'ContinuousWorld' in args.env_json:
env_json['working_dir'] = working_dir
env_json['render'] = args.render
train_env = envs.create_environment(env_json)
test_env = envs.create_environment(env_json)
# Create env_params for agent
env_params = {
"env_name": train_env.name,
"state_dim": train_env.state_dim,
"state_min": train_env.state_min,
"state_max": train_env.state_max,
"action_dim": train_env.action_dim,
"action_min": train_env.action_min,
"action_max": train_env.action_max
}
agent_params, total_num_sweeps = get_sweep_parameters(agent_json['sweeps'], args.index)
print('Agent setting: ', agent_params)
# get run idx and setting idx
RUN_NUM = int(args.index / total_num_sweeps)
SETTING_NUM = args.index % total_num_sweeps
# set Random Seed (for training)
RANDOM_SEED = RUN_NUM
arg_params['random_seed'] = RANDOM_SEED
if 'ContinuousMaze' in args.env_json or 'ContinuousWorld' in args.env_json:
torch.manual_seed(RANDOM_SEED)
# save/resume params and dirs
save_data_fname = env_json['environment'] + '_'+agent_json['agent'] + '_setting_' + str(SETTING_NUM) + '_run_'+str(RUN_NUM) + '.tar'
save_data_endname = 'END_' + env_json['environment'] + '_'+agent_json['agent'] + '_setting_' + str(SETTING_NUM) + '_run_'+str(RUN_NUM) + '.txt'
save_data_full_endname = os.path.join(args.save_data_bdir, save_data_endname)
if args.resume_training:
if os.path.isfile(save_data_full_endname):
exit()
os.makedirs(args.save_data_bdir, exist_ok=True)
resume_params = {"resume_training": args.resume_training,
"save_data_bdir": args.save_data_bdir,
"save_data_minutes": args.save_data_minutes,
"save_data_fname": save_data_fname,
"steps_per_netsave": args.steps_per_netsave,
"no_netsave": not args.cm_netsave,
"netsave_data_bdir": netsave_data_bdir
}
# create log directory (for tensorboard, gym monitor/render)
START_DATETIME = datetime.datetime.now().strftime('%Y%m%d%H%M%S')
log_dir = './{}/{}/log_summary/{}/{}_{}_{}'.format(args.out_dir, str(env_json['environment']), str(agent_json['agent']), str(SETTING_NUM), str(RUN_NUM), str(START_DATETIME))
# init config and merge custom config settings from json
config = Config()
config.merge_config(env_params)
config.merge_config(agent_params)
config.merge_config(arg_params)
# initialize agent
agent = create_agent(agent_json['agent'], config)
# monitor/render
if args.monitor or args.render:
if 'ContinuousMaze' in args.env_json or 'ContinuousWorld' in args.env_json or 'GridWorld' in args.env_json:
if args.monitor:
raise NotImplementedError('Recording not implemented')
else:
monitor_dir = log_dir+'/monitor'
if args.render:
train_env.instance = gym.wrappers.Monitor(train_env.instance, monitor_dir, video_callable=(lambda x: True), force=True)
else:
train_env.instance = gym.wrappers.Monitor(train_env.instance, monitor_dir, video_callable=False, force=True)
# initialize experiment
experiment = Experiment(agent=agent, train_environment=train_env, test_environment=test_env, seed=RANDOM_SEED, write_log=args.write_log, write_plot=args.write_plot,
resume_params = resume_params)
# run experiment
try:
episode_rewards, eval_episode_mean_rewards, eval_episode_std_rewards, train_episode_steps = experiment.run()
except KeyboardInterrupt:
exit()
# save to file
prefix = save_dir + env_json['environment'] + '_'+agent_json['agent'] + '_setting_' + str(SETTING_NUM) + '_run_'+str(RUN_NUM)
train_rewards_filename = prefix + '_EpisodeRewardsLC.txt'
np.array(episode_rewards).tofile(train_rewards_filename, sep=',', format='%15.8f')
eval_mean_rewards_filename = prefix + '_EvalEpisodeMeanRewardsLC.txt'
np.array(eval_episode_mean_rewards).tofile(eval_mean_rewards_filename, sep=',', format='%15.8f')
eval_std_rewards_filename = prefix + '_EvalEpisodeStdRewardsLC.txt'
np.array(eval_episode_std_rewards).tofile(eval_std_rewards_filename, sep=',', format='%15.8f')
train_episode_steps_filename = prefix + '_EpisodeStepsLC.txt'
np.array(train_episode_steps).tofile(train_episode_steps_filename, sep=',', format='%15.8f')
if 'ContinuousMaze' in args.env_json or 'ContinuousWorld' in args.env_json:
right_exit_count_filename = prefix + '_RightExit.txt'
np.array(experiment.right_exit_global_count).tofile(right_exit_count_filename, sep=',')
bad_exit_count_filename = prefix + '_BadExit.txt'
np.array(experiment.bad_exit_global_count).tofile(bad_exit_count_filename, sep=',')
params = []
# params_names = '_'
for key in agent_params:
# for Python 2 since JSON load delivers "unicode" rather than pure string
# then it will produce problem at plotting stage
if isinstance(agent_params[key], type(u'')):
params.append(agent_params[key].encode('utf-8'))
else:
params.append(agent_params[key])
# params_names += (key + '_')
params = np.array(params)
# name = prefix + params_names + 'Params.txt'
name = prefix + '_agent_' + 'Params.txt'
params.tofile(name, sep=',', format='%s')
# save json file as well
# Bimodal1DEnv_uneq_var1_ActorCritic_agent_Params
with open('{}{}_{}_agent_Params.json'.format(save_dir, env_json['environment'], agent_json['agent']), 'w') as json_save_file:
json.dump(agent_json, json_save_file)
# generate video and delete figures
if args.write_plot:
subprocess.run(["ffmpeg", "-framerate", "24", "-i", "{}/figures/steps_%01d.png".format(log_dir), "{}.mp4".format(log_dir)])
# subprocess.run(["mv", "{}.mp4".format(log_dir), "{}/../".format(log_dir)])
subprocess.run(["rm", "-rf", "{}/figures".format(log_dir)])
if args.resume_training:
os.system('touch {}'.format(save_data_full_endname))
if not args.save_last_net:
os.system('rm {}'.format(os.path.join(args.save_data_bdir, save_data_fname)))
if __name__ == '__main__':
main()