-
Notifications
You must be signed in to change notification settings - Fork 29
/
particle_net.py
304 lines (259 loc) · 12 KB
/
particle_net.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
import mxnet as mx
import mxnet.gluon.nn as nn
def get_shape(x):
if isinstance(x, mx.nd.NDArray):
return x.shape
elif isinstance(x, mx.symbol.Symbol):
_, x_shape, _ = x.infer_shape_partial()
return x_shape[0]
class Dense(nn.HybridBlock):
def __init__(self, output, drop_rate=0, activation='relu'):
super(Dense, self).__init__()
self.net = nn.Dense(units=output, flatten=False)
if activation is None:
self.act = None
else:
self.act = nn.Activation(activation)
self.drop = nn.Dropout(drop_rate) if drop_rate > 0 else None
def hybrid_forward(self, F, x):
x = self.net(x)
if self.act is not None:
x = self.act(x)
if self.drop is not None:
x = self.drop(x)
return x
class BatchDistanceMatrix(nn.HybridBlock):
def __init__(self):
super(BatchDistanceMatrix, self).__init__()
def hybrid_forward(self, F, A, B):
# A shape is (N, C, P_A), B shape is (N, C, P_B)
# D shape is (N, P_A, P_B)
r_A = F.sum(A * A, axis=1, keepdims=True) # (N, 1, P_A)
r_B = F.sum(B * B, axis=1, keepdims=True) # (N, 1, P_B)
m = F.batch_dot(F.transpose(A, axes=(0, 2, 1)), B) # (N, P_A, P_B)
D = F.broadcast_add(F.broadcast_sub(F.transpose(r_A, axes=(0, 2, 1)), 2 * m), r_B)
return D
class NearestNeighborsFromIndices(nn.HybridBlock):
def __init__(self, K, cpu_mode=False):
super(NearestNeighborsFromIndices, self).__init__()
self.K = K
self.cpu_mode = cpu_mode
def hybrid_forward(self, F, topk_indices, features):
# topk_indices: (N, P, K)
# features: (N, C, P)
queries_shape = get_shape(features)
batch_size = queries_shape[0]
channel_num = queries_shape[1]
point_num = queries_shape[2]
if self.cpu_mode:
# this gives a speed-up of ~2x for CPU inference
features = F.transpose(features, (0, 2, 1)) # (N, P, C)
point_indices = topk_indices # (N, P, K)
batch_indices = F.tile(F.reshape(F.arange(batch_size), (-1, 1, 1)), (1, point_num, self.K)) # (N, P, K)
indices = F.concat(batch_indices.expand_dims(0), point_indices.expand_dims(0), dim=0) # (2, N, P, K)
nn_fts = F.gather_nd(features, indices) # (N, P, K, C)
return F.transpose(nn_fts, (0, 3, 1, 2)) # (N, C, P, K)
else:
point_indices = topk_indices.expand_dims(axis=1).tile((1, channel_num, 1, 1)) # (N, C, P, K)
batch_indices = F.tile(F.reshape(F.arange(batch_size), (-1, 1, 1, 1)), (1, channel_num, point_num, self.K)) # (N, C, P, K)
channel_indices = F.tile(F.reshape(F.arange(channel_num), (1, -1, 1, 1)), (batch_size, 1, point_num, self.K)) # (N, C, P, K)
indices = F.concat(batch_indices.expand_dims(0), channel_indices.expand_dims(0), point_indices.expand_dims(0), dim=0) # (3, N, C, P, K)
return F.gather_nd(features, indices)
class EdgeConv(nn.HybridBlock):
def __init__(self, K, channels, in_channels=0, with_bn=True, activation='relu', pooling='average', cpu_mode=False):
"""EdgeConv
Args:
K: int, number of neighbors
in_channels: # of input channels
channels: tuple of output channels
pooling: pooling method ('max' or 'average')
Inputs:
points: (N, C_p, P)
features: (N, C_0, P)
Returns:
transformed points: (N, C_out, P), C_out = channels[-1]
"""
super(EdgeConv, self).__init__()
self.K = K
self.pooling = pooling
if self.pooling not in ('max', 'average'):
raise RuntimeError('Pooling method should be "max" or "average"')
with self.name_scope():
self.batch_distance_matrix = BatchDistanceMatrix()
self.knn = NearestNeighborsFromIndices(K, cpu_mode=cpu_mode)
self.convs = []
self.bns = []
self.acts = []
for idx, C in enumerate(channels):
self.convs.append(nn.Conv2D(channels=C, kernel_size=(1, 1), strides=(1, 1), use_bias=False if with_bn else True, in_channels=2 * in_channels if idx == 0 else channels[idx - 1], weight_initializer=mx.init.Xavier(rnd_type='gaussian', factor_type="in", magnitude=2)))
self.register_child(self.convs[-1], 'conv_%d' % idx)
self.bns.append(nn.BatchNorm() if with_bn else None)
self.register_child(self.bns[-1], 'bn_%d' % idx)
self.acts.append(nn.Activation(activation) if activation else None)
self.register_child(self.acts[-1], 'act_%d' % idx)
if channels[-1] == in_channels:
self.sc_conv = None
else:
self.sc_conv = nn.Conv1D(channels=channels[-1], kernel_size=1, strides=1, use_bias=False if with_bn else True, in_channels=in_channels, weight_initializer=mx.init.Xavier(rnd_type='gaussian', factor_type="in", magnitude=2))
self.sc_bn = nn.BatchNorm() if with_bn else None
self.sc_act = nn.Activation(activation) if activation else None
def hybrid_forward(self, F, points, features):
# points: (N, C_p, P)
# features: (N, C_0, P)
# distances
D = self.batch_distance_matrix(points, points) # (N, P, P)
indices = F.topk(D, axis=-1, k=self.K + 1, ret_typ='indices', is_ascend=True, dtype='float32') # (N, P, K+1)
indices = F.slice_axis(indices, axis=-1, begin=1, end=None) # (N, P, K)
fts = features
knn_fts = self.knn(indices, fts) # (N, C, P, K)
knn_fts_center = F.tile(F.expand_dims(fts, axis=3), (1, 1, 1, self.K)) # (N, C, P, K)
knn_fts = F.concat(knn_fts_center, knn_fts - knn_fts_center, dim=1) # (N, C, P, K)
# conv
x = knn_fts
for conv, bn, act in zip(self.convs, self.bns, self.acts):
x = conv(x) # (N, C', P, K)
if bn:
x = bn(x)
if act:
x = act(x)
if self.pooling == 'max':
fts = F.max(x, axis=-1) # (N, C, P)
else:
fts = F.mean(x, axis=-1) # (N, C, P)
# shortcut
if self.sc_conv:
sc = self.sc_conv(features) # (N, C_out, P)
if self.sc_bn:
sc = self.sc_bn(sc)
else:
sc = features
if self.sc_act:
return self.sc_act(sc + fts) # (N, C_out, P)
else:
return sc + fts
class ParticleNet(nn.HybridBlock):
def __init__(self, setting, **kwargs):
super(ParticleNet, self).__init__(**kwargs)
self.conv_params = setting.conv_params
self.conv_pooling = setting.conv_pooling
self.fc_params = setting.fc_params
self.num_class = setting.num_class
with self.name_scope():
self.bn_fts = nn.BatchNorm()
self.xconvs = nn.HybridSequential()
for layer_idx, layer_param in enumerate(self.conv_params):
K, channels = layer_param
if layer_idx == 0:
in_channels = 0
else:
in_channels = self.conv_params[layer_idx - 1][1][-1]
xc = EdgeConv(K, channels, with_bn=True, activation='relu', pooling=self.conv_pooling, in_channels=in_channels, cpu_mode=getattr(setting, 'cpu_mode', False))
self.xconvs.add(xc)
if self.fc_params is not None:
self.fcs = nn.HybridSequential()
for layer_idx, layer_param in enumerate(self.fc_params):
channel_num, drop_rate = layer_param
self.fcs.add(Dense(channel_num, drop_rate))
self.fcs.add(Dense(self.num_class, activation=None))
def hybrid_forward(self, F, points, features=None, mask=None):
# points : (N, C_coord, P)
# features: (N, C_features, P)
# mask: (N, 1, P)
if mask is not None:
mask = (mask != 0) # 1 if valid
coord_shift = (mask == 0) * 99. # 99 if non-valid
fts = self.bn_fts(features)
for layer_idx, layer_param in enumerate(self.conv_params):
pts = F.broadcast_add(coord_shift, points) if layer_idx == 0 else F.broadcast_add(coord_shift, fts)
fts = self.xconvs[layer_idx](pts, fts)
if mask is not None:
fts = F.broadcast_mul(fts, mask)
pool = F.mean(fts, axis=-1) # (N, C)
if self.fc_params is not None:
logits = self.fcs(pool) # (N, num_classes)
return logits
else:
return pool
class _DotDict:
pass
def _split_batch_size(shape, n):
return (shape[0] // n,) + shape[1:]
def get_particle_net(num_classes, input_shapes=None, n_gpus=0, return_symbol=True):
r"""ParticleNet model from `"ParticleNet: Jet Tagging via Particle Clouds"
<https://arxiv.org/abs/1902.08570>`_ paper.
Parameters
----------
num_classes : int
Number of output classes.
input_shapes : dict
The shapes of each input (`points`, `features`, `mask`).
n_gpus : int, default 0
Number of GPUs used in the training; for CPU inference, set to 0.
return_symbol : bool, default True
Return a mxnet Symbol if set to True. Otherwise return a mxnet gluon HybridBlock.
"""
setting = _DotDict()
setting.num_class = num_classes
# conv_params: list of tuple in the format (K, (C1, C2, C3))
setting.conv_params = [
(16, (64, 64, 64)),
(16, (128, 128, 128)),
(16, (256, 256, 256)),
]
# conv_pooling: 'average' or 'max'
setting.conv_pooling = 'average'
# fc_params: list of tuples in the format (C, drop_rate)
setting.fc_params = [(256, 0.1)]
# cpu_mode: if running in the CPU inference mode
setting.cpu_mode = (n_gpus < 1)
net = ParticleNet(setting, prefix="ParticleNet_")
if not return_symbol:
return net
else:
net.hybridize()
n_devs = max(1, n_gpus)
points = mx.sym.var('points', shape=_split_batch_size(input_shapes['points'], n_devs))
features = mx.sym.var('features', shape=_split_batch_size(input_shapes['features'], n_devs))
mask = mx.sym.var('mask', shape=_split_batch_size(input_shapes['mask'], n_devs))
sym = net(points, features, mask)
softmax = mx.sym.SoftmaxOutput(data=sym, name='softmax')
return softmax
def get_particle_net_lite(num_classes, input_shapes=None, n_gpus=0, return_symbol=True):
r"""ParticleNet-Lite model from `"ParticleNet: Jet Tagging via Particle Clouds"
<https://arxiv.org/abs/1902.08570>`_ paper.
Parameters
----------
num_classes : int
Number of output classes.
input_shapes : dict
The shapes of each input (`points`, `features`, `mask`).
n_gpus : int, default 0
Number of GPUs used in the training; for CPU inference, set to 0.
return_symbol : bool, default True
Return a mxnet Symbol if set to True. Otherwise return a mxnet gluon HybridBlock.
"""
setting = _DotDict()
setting.num_class = num_classes
# conv_params: list of tuple in the format (K, (C1, C2, C3))
setting.conv_params = [
(7, (32, 32, 32)),
(7, (64, 64, 64)),
]
# conv_pooling: 'average' or 'max'
setting.conv_pooling = 'average'
# fc_params: list of tuples in the format (C, drop_rate)
setting.fc_params = [(128, 0.1)]
# cpu_mode: if running in the CPU inference mode
setting.cpu_mode = (n_gpus < 1)
net = ParticleNet(setting, prefix="ParticleNet_")
if not return_symbol:
return net
else:
net.hybridize()
n_devs = max(1, n_gpus)
points = mx.sym.var('points', shape=_split_batch_size(input_shapes['points'], n_devs))
features = mx.sym.var('features', shape=_split_batch_size(input_shapes['features'], n_devs))
mask = mx.sym.var('mask', shape=_split_batch_size(input_shapes['mask'], n_devs))
sym = net(points, features, mask)
softmax = mx.sym.SoftmaxOutput(data=sym, name='softmax')
return softmax