-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtest_vendors.py
217 lines (171 loc) · 8.59 KB
/
test_vendors.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
import numpy as np
import pytest
from attrdict import AttrDict
from numpy import random
import recommerce.market.circular.circular_sim_market as circular_market
import recommerce.market.circular.circular_vendors as circular_vendors
import recommerce.market.linear.linear_vendors as linear_vendors
import recommerce.market.vendors as vendors
from recommerce.configuration.hyperparameter_config import HyperparameterConfigLoader
from recommerce.market.linear.linear_sim_market import LinearEconomyOligopoly
from recommerce.rl.q_learning.q_learning_agent import QLearningAgent
from recommerce.rl.reinforcement_learning_agent import ReinforcementLearningAgent
config_market: AttrDict = HyperparameterConfigLoader.load('market_config', circular_market.CircularEconomyRebuyPriceMonopoly)
abstract_agent_classes_testcases = [
vendors.Agent,
circular_vendors.CircularAgent,
linear_vendors.LinearAgent,
vendors.HumanPlayer,
vendors.RuleBasedAgent,
vendors.FixedPriceAgent,
ReinforcementLearningAgent
]
@pytest.mark.parametrize('agent', abstract_agent_classes_testcases)
def test_abstract_agent_classes(agent):
with pytest.raises(TypeError) as error_message:
agent()
assert 'Can\'t instantiate abstract class' in str(error_message.value)
non_abstract_agent_classes_testcases = [
linear_vendors.HumanPlayerLE,
circular_vendors.HumanPlayerCE,
circular_vendors.HumanPlayerCERebuy,
circular_vendors.FixedPriceCEAgent,
circular_vendors.FixedPriceCERebuyAgent,
linear_vendors.FixedPriceLEAgent,
circular_vendors.RuleBasedCEAgent,
circular_vendors.RuleBasedCERebuyAgent,
circular_vendors.RuleBasedCERebuyAgentCompetitive,
circular_vendors.RuleBasedCERebuyAgentStorageMinimizer
]
@pytest.mark.parametrize('agent', non_abstract_agent_classes_testcases)
def test_non_abstract_agent_classes(agent):
agent(config_market)
def test_non_abstract_qlearning_agent():
QLearningAgent(
marketplace=LinearEconomyOligopoly(config=config_market),
config_market=config_market,
config_rl=HyperparameterConfigLoader.load('q_learning_config', QLearningAgent)
)
fixed_price_agent_observation_policy_pairs_testcases = [
(linear_vendors.FixedPriceLEAgent(config_market=config_market), config_market.production_price + 3),
(linear_vendors.FixedPriceLEAgent(config_market=config_market, fixed_price=7), 7),
(circular_vendors.FixedPriceCEAgent(config_market=config_market), (2, 4)),
(circular_vendors.FixedPriceCEAgent(config_market=config_market, fixed_price=(3, 5)), (3, 5)),
(circular_vendors.FixedPriceCERebuyAgent(config_market=config_market), (3, 6, 2)),
(circular_vendors.FixedPriceCERebuyAgent(config_market=config_market, fixed_price=(4, 7, 3)), (4, 7, 3))
]
@pytest.mark.parametrize('agent, expected_result', fixed_price_agent_observation_policy_pairs_testcases)
def test_fixed_price_agent_observation_policy_pairs(agent, expected_result):
# state doesn't actually matter since we test fixed price agents
assert expected_result == agent.policy([50, 60])
storage_evaluation_testcases = [
([50, 5], (6, 9)),
([50, 9], (5, 8)),
([50, 12], (4, 7)),
([50, 15], (2, 9))
]
@pytest.mark.parametrize('state, expected_prices', storage_evaluation_testcases)
def test_storage_evaluation(state, expected_prices):
agent = circular_vendors.RuleBasedCEAgent(config_market=config_market)
assert expected_prices == agent.policy(state)
storage_evaluation_with_rebuy_price_testcases = [
([50, 5], (6, 8, 5)),
([50, 9], (5, 7, 3)),
([50, 12], (4, 6, 2)),
([50, 15], (2, 9, 0))
]
@pytest.mark.parametrize('state, expected_prices', storage_evaluation_with_rebuy_price_testcases)
def test_storage_evaluation_with_rebuy_price(state, expected_prices):
changed_config = HyperparameterConfigLoader.load('market_config', circular_market.CircularEconomyRebuyPriceMonopoly)
changed_config.max_price = 10
changed_config.production_price = 2
agent = circular_vendors.RuleBasedCERebuyAgent(config_market=changed_config)
assert expected_prices == agent.policy(state)
def test_prices_are_not_higher_than_allowed():
changed_config = HyperparameterConfigLoader.load('market_config', circular_market.CircularEconomyRebuyPriceMonopoly)
changed_config.max_price = 10
changed_config.production_price = 9
test_agent = circular_vendors.RuleBasedCEAgent(config_market=changed_config)
assert (9, 9) >= test_agent.policy([50, 60])
# Helper function that creates a random offer (state that includes the agent's price) to test customer behaviour.
# This is dependent on the sim_market working!
# TODO: Make deterministic #174
def random_offer_linear_duopoly():
return [
random.randint(1, config_market.max_quality),
random.randint(1, config_market.max_price),
random.randint(1, config_market.max_quality)
]
def random_offer_circular_oligopoly(is_rebuy_economy: bool):
single_comp_prices = [
random.randint(1, config_market.max_price),
random.randint(1, config_market.max_price),
random.randint(0, config_market.max_storage)
]
viewed_agent_list = [random.randint(1, 1000), random.randint(0, config_market.max_storage)]
observation = viewed_agent_list
if is_rebuy_economy:
for _ in range(4):
observation += [random.randint(1, config_market.max_price)] + single_comp_prices
return np.array(observation)
else:
for _ in range(4):
observation += single_comp_prices
return np.array(observation)
# TODO: figure out which rule-based agents perform their policies with "production_price-increment"
# policy_testcases = []
# # Test the policy()-function of the different competitors
# # TODO: Update this test for all current competitors
# @pytest.mark.parametrize('competitor_class, state', policy_testcases)
# def test_policy(competitor_class, state):
# mock_json = json.dumps(ut_t.create_hyperparameter_mock_dict(
# sim_market=ut_t.create_hyperparameter_mock_dict_sim_market(max_price=10, production_price=2)))
# with patch('builtins.open', mock_open(read_data=mock_json)) as mock_file:
# ut_t.check_mock_file(mock_file, mock_json)
# import_config()
# competitor = competitor_class()
# assert config.production_price <= competitor.policy(state) < config.max_price
policy_plus_one_testcases = [
(linear_vendors.LinearRatio1LEAgent, random_offer_linear_duopoly()),
(linear_vendors.LERandomAgent, random_offer_linear_duopoly()),
(linear_vendors.Just2PlayersLEAgent, random_offer_linear_duopoly())
]
# Test the policy()-function of the different competitors.
# This test differs from the one before that these competitors use config.PRODUCTION_PRICE + 1
# TODO: Update this test for all current competitors
@pytest.mark.parametrize('competitor_class, state', policy_plus_one_testcases)
def test_policy_plus_one(competitor_class, state):
changed_config = HyperparameterConfigLoader.load('market_config', circular_market.CircularEconomyRebuyPriceMonopoly)
changed_config.max_price = 10
changed_config.production_price = 2
competitor = competitor_class(config_market=changed_config)
assert changed_config.production_price + 1 <= competitor.policy(state) < changed_config.max_price
clamp_price_testcases = [
10,
-1,
5
]
@pytest.mark.parametrize('price', clamp_price_testcases)
def test_clamp_price(price):
changed_config = HyperparameterConfigLoader.load('market_config', circular_market.CircularEconomyRebuyPriceMonopoly)
changed_config.max_price = 9
assert 0 <= circular_vendors.RuleBasedCEAgent(config_market=changed_config)._clamp_price(price) <= 9
def test_get_competitors_prices_with_rebuy():
observation = random_offer_circular_oligopoly(is_rebuy_economy=True)
competitors_refurbished_prices, competitors_new_prices, competitors_rebuy_prices = \
circular_vendors.RuleBasedCERebuyAgentCompetitive(config_market=config_market)._get_competitor_prices(
observation=observation,
is_rebuy_economy=True)
assert len(competitors_new_prices) == len(competitors_rebuy_prices) == len(competitors_refurbished_prices)
for competitor in range(len(competitors_new_prices)):
assert competitors_refurbished_prices[competitor] == observation[(competitor * 4) + 2]
assert competitors_new_prices[competitor] == observation[(competitor * 4) + 3]
assert competitors_rebuy_prices[competitor] == observation[(competitor * 4) + 4]
def test_get_competitors_prices():
observation = random_offer_circular_oligopoly(is_rebuy_economy=False)
competitors_refurbished_prices, competitors_new_prices = \
circular_vendors.RuleBasedCEAgent(config_market=config_market)._get_competitor_prices(observation=observation, is_rebuy_economy=False)
assert len(competitors_new_prices) == len(competitors_refurbished_prices)
for competitor in range(len(competitors_new_prices)):
assert competitors_refurbished_prices[competitor] == observation[(competitor * 4) + 2]
assert competitors_new_prices[competitor] == observation[(competitor * 4) + 3]