Skip to content

Latest commit

 

History

History
16 lines (16 loc) · 6.47 KB

fully-connected-layer.md

File metadata and controls

16 lines (16 loc) · 6.47 KB

ফুলি কানেক্টেড লেয়ার

এবার আসুন এই লেয়ারের কাজ নিয়ে ভাবি - এই লেয়ার ইনপুট হিসেবে নেয় কনভলিউশন এবং পুলিং লেয়ার কাছ থেকে পাওয়া প্রসেসড ইমেজ এবং তার উপর চিন্তা (সেই চিন্তা) এবং ট্রেনিং   করে প্যাটার্ন বুঝে নেয় এবং ঠিক করে কোনটা কোন ইমেজ।

উপরে আবার আমরা একবার রিভিউ দিচ্ছি এখন পর্যন্ত কি কি হয়েছে। এই পর্যায়ে এসে আমরা আবারো এক ধরনের ফিল্টার তৈরি করবো। ফিল্টারটা এবার অনুমান করা না বরং উপরের স্টেজের ফাইনাল ধাপের যে ফ্ল্যাট রিপ্রেজেন্টেশন পাওয়া গেছে তার একটা অর্থবহ ম্যাট্রিক্স রূপ। অর্থাৎ, এই ম্যাট্রিক্সে আমরা সেই তথ্য স্টোরে করবো যার মাধ্যমে বলা যাবে কোথায় আমরা একটি ব্যাক স্ল্যাস এবং কোথায় একটি ফরওয়ার্ড স্ল্যাস পেয়েছিলাম। অর্থাৎ একটা রেকর্ড বা লগ রাখার মত। নিচের ফিগারে আমরা দেখবো কিভাবে এটা করতে পারি,

অর্থাৎ X এর পুলিং লেয়ারের পর ফ্ল্যাট রিপ্রেজেন্টেশনে প্রথমটা ব্যাক স্ল্যাস তাই আমরা স্টোর ম্যাট্রিক্সের প্রথম ভ্যালু সেট করলাম 1. আবার ফ্ল্যাট রিপ্রেজেন্টেশনের দ্বিতীয় এলিমেন্টটা ব্যাক স্ল্যাস না তাই স্টোরে ম্যাট্রিক্সের প্রথম সারির দ্বিতীয় কলামে  -1 এভাবে,

ফাইনালি আমরা সব গুলো ফিল্টার পাবো নিচের মত,

এখন আমরা ফিল্টারের 1, -1 কে যদি + এবং মাইনাসে প্রকাশ করি তাহলে ব্যবহার উপযোগী ফিল্টার ধরতে পারি নিচের মত,

এরপর আমরা যেটা করতে পারি তা হল, আমরা একটা নির্দিষ্ট বর্ণের জন্য প্রাপ্ত 2D ম্যাট্রিক্স এর সাথে সবগুলো ফিল্টার (+ - ওয়ালা ম্যাট্রিক্স) এর তুলনা করবো। যেমন - নিচে X এর জন্য প্রাপ্ত ম্যাট্রিক্স এর সাথে সবগুলা ফিল্টার এর সমন্বয় (গুন যোগ) করা হয়েছে

এবং X এর ফিল্টার এর সাথেই সব চেয়ে বেশি স্কোর এসেছে (আসাটাই স্বাভাবিক কারন 2D ম্যাট্রিক্স আর ফিল্টার ম্যাট্রিক্স একই দিকের মান নির্দেশ করে)। তাই বলা যায় এই ইমেজটি X এর ইমেজ :) :D আবার O এর জন্য এই ফুলি কানেক্টেড লেয়ারটির ক্যালকুলেশন ট্রাই করে দেখি,

এক্ষেত্রেও O এর ফিল্টারের সাথেই বেশি স্কোর আসছে তাই সঠিক উত্তর, O.