forked from StanfordVL/mini_behavior
-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathNovelD_PPO.py
469 lines (394 loc) · 18.8 KB
/
NovelD_PPO.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
# NovelD_PPO.py
import numpy as np
import torch
import torch.nn as nn
import torch.optim as optim
import torch.nn.functional as F
import gym
import wandb
from env_wrapper import CustomObservationWrapper
def make_env(env_id, seed, idx):
def thunk():
env = gym.make(env_id)
env = CustomObservationWrapper(env)
env.seed(seed + idx)
return env
return thunk
class NovelD_PPO:
"""
PPO implementation with Random Network Distillation for novelty detection
"""
def __init__(
self,
env_id,
device="cpu",
total_timesteps=10000,
learning_rate=3e-4,
num_envs=8,
num_steps=125,
gamma=0.99,
gae_lambda=0.95,
num_minibatches=4,
update_epochs=4,
clip_coef=0.2,
ent_coef=0.01,
vf_coef=0.5,
max_grad_norm=0.5,
target_kl=None,
int_coef=1.0,
ext_coef=0.0,
int_gamma=0.99,
alpha=0.5,
update_proportion=0.25,
seed=1
):
self.envs = gym.vector.SyncVectorEnv(
[make_env(env_id, seed, i) for i in range(num_envs)]
)
self.device = torch.device(device)
self.total_timesteps = total_timesteps
self.learning_rate = learning_rate
self.num_envs = num_envs
self.num_steps = num_steps
self.gamma = gamma
self.gae_lambda = gae_lambda
self.num_minibatches = num_minibatches
self.update_epochs = update_epochs
self.clip_coef = clip_coef
self.ent_coef = ent_coef
self.vf_coef = vf_coef
self.max_grad_norm = max_grad_norm
self.target_kl = target_kl
self.int_coef = int_coef
self.ext_coef = ext_coef
self.int_gamma = int_gamma
self.alpha = alpha
self.update_proportion = update_proportion
self.anneal_lr = True
# Calculate batch sizes
self.batch_size = int(num_envs * num_steps)
self.minibatch_size = int(self.batch_size // self.num_minibatches)
self.num_iterations = total_timesteps // self.batch_size
# Initialize running statistics
self.reward_rms = RunningMeanStd()
self.obs_rms = RunningMeanStd(shape=self.envs.single_observation_space.shape)
# Use the environment's observation space
self.obs_space = self.envs.single_observation_space
self.obs_dim = self.obs_space.shape[0]
# Initialize agent and RND model
self.agent = Agent(self.obs_dim, self.envs.single_action_space.n).to(self.device).float()
self.rnd_model = RNDModel(self.obs_dim).to(self.device).float()
# Add validation for environment compatibility
if not hasattr(self.envs.single_observation_space, 'shape'):
raise ValueError("Environment must have an observation space with a shape attribute")
# Add better reward scaling parameters
self.reward_scale = 1.0
self.novelty_scale = 1.0
self.ext_reward_scale = 1.0
self.int_reward_scale = 1.0
def train(self):
wandb.init(
project="noveld-ppo-train",
config={
"env_id": self.envs,
"total_timesteps": self.total_timesteps,
"learning_rate": self.learning_rate,
"num_envs": self.num_envs,
"num_steps": self.num_steps,
"gamma": self.gamma,
"gae_lambda": self.gae_lambda,
"num_minibatches": self.num_minibatches,
"update_epochs": self.update_epochs,
"clip_coef": self.clip_coef,
"ent_coef": self.ent_coef,
"vf_coef": self.vf_coef,
"int_coef": self.int_coef,
"ext_coef": self.ext_coef,
"device": str(self.device)
}
)
print("\n=== Training Configuration ===")
print(f"Total Steps: {self.total_timesteps:,}")
print(f"Batch Size: {self.batch_size}")
print(f"Learning Rate: {self.learning_rate}")
print(f"Device: {self.device}\n")
optimizer = optim.Adam(
list(self.agent.parameters()) + list(self.rnd_model.predictor.parameters()),
lr=self.learning_rate, eps=1e-5
)
next_obs = torch.FloatTensor(self.envs.reset()).to(self.device)
obs = torch.zeros((self.num_steps, self.num_envs) + self.obs_space.shape, dtype=torch.float32).to(self.device)
actions = torch.zeros((self.num_steps, self.num_envs) + self.envs.single_action_space.shape, dtype=torch.float32).to(self.device)
logprobs = torch.zeros((self.num_steps, self.num_envs), dtype=torch.float32).to(self.device)
rewards = torch.zeros((self.num_steps, self.num_envs), dtype=torch.float32).to(self.device)
curiosity_rewards = torch.zeros((self.num_steps, self.num_envs), dtype=torch.float32).to(self.device)
dones = torch.zeros((self.num_steps, self.num_envs), dtype=torch.float32).to(self.device)
ext_values = torch.zeros((self.num_steps, self.num_envs), dtype=torch.float32).to(self.device)
int_values = torch.zeros((self.num_steps, self.num_envs), dtype=torch.float32).to(self.device)
# Training loop variables
global_step = 0
next_done = torch.zeros(self.num_envs).to(self.device)
num_updates = self.total_timesteps // self.batch_size
for update in range(1, num_updates + 1):
if self.anneal_lr:
frac = 1.0 - (update - 1.0) / num_updates
lrnow = frac * self.learning_rate
optimizer.param_groups[0]["lr"] = lrnow
# Collect episode data
for step in range(self.num_steps):
global_step += 1 * self.num_envs
obs[step] = next_obs
dones[step] = next_done
# Get action and value
with torch.no_grad():
action, logprob, _, value_ext, value_int = self.agent.get_action_and_value(obs[step])
actions[step] = action
logprobs[step] = logprob
ext_values[step] = value_ext.flatten()
int_values[step] = value_int.flatten()
# Execute action
next_obs, reward, done, info = self.envs.step(action.cpu().numpy())
rewards[step] = torch.FloatTensor(reward).to(self.device)
next_obs = torch.FloatTensor(next_obs).to(self.device)
next_done = torch.FloatTensor(done).to(self.device)
# Calculate novelty rewards
with torch.no_grad():
novelty = self.calculate_novelty(next_obs)
curiosity_rewards[step] = self.normalize_rewards(novelty)
# Perform PPO update
with torch.no_grad():
next_value_ext, next_value_int = self.agent.get_value(next_obs)
ext_advantages, int_advantages = self.compute_advantages(
next_value_ext, next_value_int, rewards, curiosity_rewards,
ext_values, int_values, dones, next_done
)
# Flatten the batch
b_obs = obs.reshape((-1,) + (self.obs_dim,))
b_logprobs = logprobs.reshape(-1)
b_actions = actions.reshape(-1)
b_ext_advantages = ext_advantages.reshape(-1)
b_int_advantages = int_advantages.reshape(-1)
b_ext_returns = (b_ext_advantages + ext_values.reshape(-1))
b_int_returns = (b_int_advantages + int_values.reshape(-1))
b_advantages = b_int_advantages * self.int_coef
# Optimize policy and value networks
self.optimize(b_obs, b_logprobs, b_actions, b_advantages, b_ext_returns, b_int_returns, optimizer, global_step)
# Log training metrics
if update % 10 == 0:
wandb.log({
"learning_rate": optimizer.param_groups[0]["lr"],
"novelty": novelty.mean().item(),
"curiosity_reward": curiosity_rewards.mean().item(),
"global_step": global_step,
"updates": update
})
print(f"Update {update}/{num_updates}")
print(f"Novelty: {novelty.mean().item():.4f}")
print(f"Curiosity Reward: {curiosity_rewards.mean().item():.4f}")
print("-" * 50)
wandb.finish()
self.envs.close()
def compute_advantages(self, next_value_ext, next_value_int, rewards, curiosity_rewards, ext_values, int_values, dones, next_done):
# Ensure all inputs are properly shaped
next_value_ext = next_value_ext.flatten()
next_value_int = next_value_int.flatten()
# Calculate GAE advantages for both extrinsic and intrinsic rewards
ext_advantages = torch.zeros_like(rewards, device=self.device)
int_advantages = torch.zeros_like(curiosity_rewards, device=self.device)
ext_lastgaelam = torch.zeros(self.num_envs, device=self.device)
int_lastgaelam = torch.zeros(self.num_envs, device=self.device)
for t in reversed(range(self.num_steps)):
if t == self.num_steps - 1:
ext_nextnonterminal = 1.0 - next_done
int_nextnonterminal = torch.ones_like(next_done)
ext_nextvalues = next_value_ext
int_nextvalues = next_value_int
else:
ext_nextnonterminal = 1.0 - dones[t + 1]
int_nextnonterminal = torch.ones_like(dones[t + 1])
ext_nextvalues = ext_values[t + 1]
int_nextvalues = int_values[t + 1]
# Calculate deltas
ext_delta = (rewards[t] * self.ext_reward_scale) + \
self.gamma * ext_nextvalues * ext_nextnonterminal - ext_values[t]
int_delta = (curiosity_rewards[t] * self.int_reward_scale) + \
self.int_gamma * int_nextvalues * int_nextnonterminal - int_values[t]
# Update advantages
ext_advantages[t] = ext_lastgaelam = ext_delta + self.gamma * self.gae_lambda * ext_nextnonterminal * ext_lastgaelam
int_advantages[t] = int_lastgaelam = int_delta + self.int_gamma * self.gae_lambda * int_nextnonterminal * int_lastgaelam
return ext_advantages, int_advantages
def optimize(self, b_obs, b_logprobs, b_actions, b_advantages, b_ext_returns, b_int_returns, optimizer, global_step):
# Optimize policy and value networks
rnd_next_obs = self.normalize_obs(b_obs)
clipfracs = []
for epoch in range(self.update_epochs):
inds = np.arange(self.batch_size)
np.random.shuffle(inds)
for start in range(0, self.batch_size, self.minibatch_size):
end = start + self.minibatch_size
mb_inds = inds[start:end]
# RND Loss
predict_next_state_feature, target_next_state_feature = self.rnd_model(rnd_next_obs[mb_inds])
forward_loss = F.mse_loss(predict_next_state_feature, target_next_state_feature.detach(), reduction="none").mean(-1)
mask = (torch.rand(len(forward_loss), device=self.device) < self.update_proportion).float()
forward_loss = (forward_loss * mask).sum() / torch.max(mask.sum(), torch.tensor([1], device=self.device, dtype=torch.float32))
# Get new values and logprob
_, newlogprob, entropy, new_ext_values, new_int_values = self.agent.get_action_and_value(b_obs[mb_inds], b_actions.long()[mb_inds])
# Policy loss
logratio = newlogprob - b_logprobs[mb_inds]
ratio = logratio.exp()
with torch.no_grad():
approx_kl = ((ratio - 1) - logratio).mean()
clipfracs += [((ratio - 1.0).abs() > self.clip_coef).float().mean().item()]
mb_advantages = b_advantages[mb_inds]
pg_loss1 = -mb_advantages * ratio
pg_loss2 = -mb_advantages * torch.clamp(ratio, 1 - self.clip_coef, 1 + self.clip_coef)
pg_loss = torch.max(pg_loss1, pg_loss2).mean()
# Value loss
new_ext_values = new_ext_values.view(-1)
new_int_values = new_int_values.view(-1)
ext_v_loss = 0.5 * ((new_ext_values - b_ext_returns[mb_inds]) ** 2).mean()
int_v_loss = 0.5 * ((new_int_values - b_int_returns[mb_inds]) ** 2).mean()
v_loss = int_v_loss
# Combined loss
entropy_loss = entropy.mean()
loss = pg_loss - self.ent_coef * entropy_loss + v_loss * self.vf_coef + forward_loss
optimizer.zero_grad()
loss.backward()
if self.max_grad_norm:
torch.nn.utils.clip_grad_norm_(list(self.agent.parameters()) + list(self.rnd_model.predictor.parameters()), self.max_grad_norm)
optimizer.step()
if self.target_kl is not None:
if approx_kl > self.target_kl:
break
def calculate_novelty(self, obs):
with torch.no_grad():
normalized_obs = self.normalize_obs(obs)
target_feature = self.rnd_model.target(normalized_obs)
predict_feature = self.rnd_model.predictor(normalized_obs)
# Add small epsilon to prevent division by zero
novelty = ((target_feature - predict_feature) ** 2).sum(1) / 2 + 1e-8
return novelty.clamp(0, 10) # Clamp values between 0 and 10
def normalize_obs(self, obs):
# Ensure obs is a tensor
if torch.isnan(obs).any():
raise ValueError("NaN values detected in observations")
# Ensure obs is detached if it requires grad
if obs.requires_grad:
obs = obs.detach()
# Handle both single and batched observations
if len(obs.shape) == 1:
obs = obs.unsqueeze(0)
normalized = ((obs - torch.FloatTensor(self.obs_rms.mean).to(self.device)) /
torch.sqrt(torch.FloatTensor(self.obs_rms.var).to(self.device) + 1e-8)).clip(-5, 5)
# Return in original shape
return normalized.squeeze(0) if len(obs.shape) == 1 else normalized
def save_model(self, filename):
model_state = {
'agent': self.agent.state_dict(),
'rnd_model': self.rnd_model.state_dict(),
'obs_rms_mean': self.obs_rms.mean,
'obs_rms_var': self.obs_rms.var,
'reward_rms_mean': self.reward_rms.mean,
'reward_rms_var': self.reward_rms.var,
'hyperparameters': {
'learning_rate': self.learning_rate,
'gamma': self.gamma,
'int_coef': self.int_coef,
'ext_coef': self.ext_coef
}
}
torch.save(model_state, filename)
print(f"Model saved to {filename}")
def normalize_reward(self, reward):
return reward / torch.sqrt(torch.FloatTensor([self.reward_rms.var]).to(self.device) + 1e-8)
def normalize_rewards(self, rewards):
"""Normalize rewards using running statistics with better numerical stability"""
if torch.isnan(rewards).any():
print("Warning: NaN rewards detected")
rewards = torch.nan_to_num(rewards, 0.0)
rewards_np = rewards.detach().cpu().numpy()
self.reward_rms.update(rewards_np.reshape(-1))
normalized_rewards = rewards / torch.sqrt(
torch.FloatTensor([self.reward_rms.var]).to(self.device) + 1e-8
)
# Add clipping for stability
return normalized_rewards.clamp(-10, 10)
class RunningMeanStd:
"""Tracks running mean and standard deviation of input data"""
def __init__(self, shape=()):
self.mean = np.zeros(shape, 'float64')
self.var = np.ones(shape, 'float64')
self.count = 1e-4
def update(self, x):
if not isinstance(x, np.ndarray):
x = np.asarray(x)
if x.size == 0 or np.any(np.isnan(x)):
return
batch_mean = np.mean(x, axis=0)
batch_var = np.var(x, axis=0)
batch_count = x.shape[0]
self.update_from_moments(batch_mean, batch_var, batch_count)
def update_from_moments(self, batch_mean, batch_var, batch_count):
delta = batch_mean - self.mean
tot_count = self.count + batch_count
new_mean = self.mean + delta * batch_count / tot_count
m_a = self.var * self.count
m_b = batch_var * batch_count
M2 = m_a + m_b + np.square(delta) * self.count * batch_count / tot_count
new_var = M2 / tot_count
new_count = tot_count
self.mean = new_mean
self.var = new_var
self.count = new_count
class Agent(nn.Module):
"""Neural network for policy and value functions"""
# Agent class implementing the policy and value functions
def __init__(self, obs_dim, action_dim):
super().__init__()
self.network = nn.Sequential(
nn.Linear(obs_dim, 256),
nn.ReLU(),
nn.Linear(256, 448),
nn.ReLU(),
nn.Linear(448, 448),
nn.ReLU()
)
self.actor = nn.Linear(448, action_dim)
self.critic_ext = nn.Linear(448, 1)
self.critic_int = nn.Linear(448, 1)
self.float()
def get_value(self, x):
hidden = self.network(x)
return self.critic_ext(hidden), self.critic_int(hidden)
def get_action_and_value(self, x, action=None):
hidden = self.network(x)
logits = self.actor(hidden)
probs = torch.distributions.Categorical(logits=logits)
if action is None:
action = probs.sample()
return action, probs.log_prob(action), probs.entropy(), self.critic_ext(hidden), self.critic_int(hidden)
class RNDModel(nn.Module):
"""Random Network Distillation model for novelty detection"""
# Random Network Distillation model
def __init__(self, input_size, hidden_size=256):
super().__init__()
self.target = nn.Sequential(
nn.Linear(input_size, hidden_size),
nn.ReLU(),
nn.Linear(hidden_size, hidden_size),
nn.ReLU(),
nn.Linear(hidden_size, hidden_size)
)
self.predictor = nn.Sequential(
nn.Linear(input_size, hidden_size),
nn.ReLU(),
nn.Linear(hidden_size, hidden_size),
nn.ReLU(),
nn.Linear(hidden_size, hidden_size)
)
self.float()
def forward(self, x):
target_feature = self.target(x)
predict_feature = self.predictor(x)
return predict_feature, target_feature