-
Notifications
You must be signed in to change notification settings - Fork 51
/
Copy pathmodel.py
275 lines (223 loc) · 11.4 KB
/
model.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
from dataclasses import dataclass
from typing import Optional
import math
import torch
import torch.nn as nn
import torch.nn.functional as F
@dataclass
class ModelArgs:
dim: int = 4096
n_layers: int = 32
n_heads: int = 32
n_kv_heads: Optional[int] = None
vocab_size: int = -1 # Later set in the build method
multiple_of: int = 256
ffn_dim_multiplier: Optional[float] = None
norm_eps: float = 1e-5
# Needed for KV cache
max_batch_size: int = 32
max_seq_len: int = 2048
device: str = None
class RMSNorm(nn.Module):
def __init__(self, dim: int, eps: float = 1e-6):
super().__init__()
self.eps = eps
# The gamma parameter
self.weight = nn.Parameter(torch.ones(dim))
def _norm(self, x: torch.Tensor):
# (B, Seq_Len, Dim) * (B, Seq_Len, 1) = (B, Seq_Len, Dim)
# rsqrt: 1 / sqrt(x)
return x * torch.rsqrt(x.pow(2).mean(-1, keepdim=True) + self.eps)
def forward(self, x: torch.Tensor):
# (Dim) * (B, Seq_Len, Dim) = (B, Seq_Len, Dim)
return self.weight * self._norm(x.float()).type_as(x)
def precompute_theta_pos_frequencies(head_dim: int, seq_len: int, device: str, theta: float = 10000.0):
# As written in the paragraph 3.2.2 of the paper
# >> In order to generalize our results in 2D to any xi ∈ Rd where **d is even**, [...]
assert head_dim % 2 == 0, "Dimension must be divisible by 2"
# Build the theta parameter
# According to the formula theta_i = 10000^(-2(i-1)/dim) for i = [1, 2, ... dim/2]
# Shape: (Head_Dim / 2)
theta_numerator = torch.arange(0, head_dim, 2).float()
# Shape: (Head_Dim / 2)
theta = 1.0 / (theta ** (theta_numerator / head_dim)).to(device) # (Dim / 2)
# Construct the positions (the "m" parameter)
# Shape: (Seq_Len)
m = torch.arange(seq_len, device=device)
# Multiply each theta by each position using the outer product.
# Shape: (Seq_Len) outer_product* (Head_Dim / 2) -> (Seq_Len, Head_Dim / 2)
freqs = torch.outer(m, theta).float()
# We can compute complex numbers in the polar form c = R * exp(m * theta), where R = 1 as follows:
# (Seq_Len, Head_Dim / 2) -> (Seq_Len, Head_Dim / 2)
freqs_complex = torch.polar(torch.ones_like(freqs), freqs)
return freqs_complex
def apply_rotary_embeddings(x: torch.Tensor, freqs_complex: torch.Tensor, device: str):
# Separate the last dimension pairs of two values, representing the real and imaginary parts of the complex number
# Two consecutive values will become a single complex number
# (B, Seq_Len, H, Head_Dim) -> (B, Seq_Len, H, Head_Dim/2)
x_complex = torch.view_as_complex(x.float().reshape(*x.shape[:-1], -1, 2))
# Reshape the freqs_complex tensor to match the shape of the x_complex tensor. So we need to add the batch dimension and the head dimension
# (Seq_Len, Head_Dim/2) --> (1, Seq_Len, 1, Head_Dim/2)
freqs_complex = freqs_complex.unsqueeze(0).unsqueeze(2)
# Multiply each complex number in the x_complex tensor by the corresponding complex number in the freqs_complex tensor
# Which results in the rotation of the complex number as shown in the Figure 1 of the paper
# (B, Seq_Len, H, Head_Dim/2) * (1, Seq_Len, 1, Head_Dim/2) = (B, Seq_Len, H, Head_Dim/2)
x_rotated = x_complex * freqs_complex
# Convert the complex number back to the real number
# (B, Seq_Len, H, Head_Dim/2) -> (B, Seq_Len, H, Head_Dim/2, 2)
x_out = torch.view_as_real(x_rotated)
# (B, Seq_Len, H, Head_Dim/2, 2) -> (B, Seq_Len, H, Head_Dim)
x_out = x_out.reshape(*x.shape)
return x_out.type_as(x).to(device)
def repeat_kv(x: torch.Tensor, n_rep: int) -> torch.Tensor:
batch_size, seq_len, n_kv_heads, head_dim = x.shape
if n_rep == 1:
return x
return (
# (B, Seq_Len, N_KV_Heads, 1, Head_Dim)
x[:, :, :, None, :]
# (B, Seq_Len, N_KV_Heads, N_Rep, Head_Dim)
.expand(batch_size, seq_len, n_kv_heads, n_rep, head_dim)
# (B, Seq_Len, N_KV_Heads * N_Rep, Head_Dim)
.reshape(batch_size, seq_len, n_kv_heads * n_rep, head_dim)
)
class SelfAttention(nn.Module):
def __init__(self, args: ModelArgs):
super().__init__()
# Indicates the number of heads for the Keys and Values
self.n_kv_heads = args.n_heads if args.n_kv_heads is None else args.n_kv_heads
# Indicates the number of heads for the Queries
self.n_heads_q = args.n_heads
# Indicates how many times the Keys and Values should be repeated
self.n_rep = self.n_heads_q // self.n_kv_heads
# Indicates the dimension of each head, that is, the part of the embedding that each head will be responsible for
self.head_dim = args.dim // args.n_heads
self.wq = nn.Linear(args.dim, args.n_heads * self.head_dim, bias=False)
self.wk = nn.Linear(args.dim, self.n_kv_heads * self.head_dim, bias=False)
self.wv = nn.Linear(args.dim, self.n_kv_heads * self.head_dim, bias=False)
self.wo = nn.Linear(args.n_heads * self.head_dim, args.dim, bias=False)
self.cache_k = torch.zeros((args.max_batch_size, args.max_seq_len, self.n_kv_heads, self.head_dim))
self.cache_v = torch.zeros((args.max_batch_size, args.max_seq_len, self.n_kv_heads, self.head_dim))
def forward(
self,
x: torch.Tensor,
start_pos: int,
freqs_complex: torch.Tensor
):
batch_size, seq_len, _ = x.shape # (B, 1, Dim)
# (B, 1, Dim) -> (B, 1, H_Q * Head_Dim)
xq = self.wq(x)
# (B, 1, Dim) -> (B, 1, H_KV * Head_Dim)
xk = self.wk(x)
# (B, 1, Dim) -> (B, 1, H_KV * Head_Dim)
xv = self.wv(x)
# (B, 1, H_Q * Head_Dim) -> (B, 1, H_Q, Head_Dim)
xq = xq.view(batch_size, seq_len, self.n_heads_q, self.head_dim)
# (B, 1, H_KV * Head_Dim) -> (B, 1, H_KV, Head_Dim)
xk = xk.view(batch_size, seq_len, self.n_kv_heads, self.head_dim)
# (B, 1, H_KV * Head_Dim) -> (B, 1, H_KV, Head_Dim)
xv = xv.view(batch_size, seq_len, self.n_kv_heads, self.head_dim)
# (B, 1, H_Q, Head_Dim) --> (B, 1, H_Q, Head_Dim)
xq = apply_rotary_embeddings(xq, freqs_complex, device=x.device)
# (B, 1, H_KV, Head_Dim) --> (B, 1, H_KV, Head_Dim)
xk = apply_rotary_embeddings(xk, freqs_complex, device=x.device)
# Replace the entry in the cache
self.cache_k[:batch_size, start_pos : start_pos + seq_len] = xk
self.cache_v[:batch_size, start_pos : start_pos + seq_len] = xv
# (B, Seq_Len_KV, H_KV, Head_Dim)
keys = self.cache_k[:batch_size, : start_pos + seq_len]
# (B, Seq_Len_KV, H_KV, Head_Dim)
values = self.cache_v[:batch_size, : start_pos + seq_len]
# Since every group of Q shares the same K and V heads, just repeat the K and V heads for every Q in the same group.
# (B, Seq_Len_KV, H_KV, Head_Dim) --> (B, Seq_Len_KV, H_Q, Head_Dim)
keys = repeat_kv(keys, self.n_rep)
# (B, Seq_Len_KV, H_KV, Head_Dim) --> (B, Seq_Len_KV, H_Q, Head_Dim)
values = repeat_kv(values, self.n_rep)
# (B, 1, H_Q, Head_Dim) -> (B, H_Q, 1, Head_Dim)
xq = xq.transpose(1, 2)
# (B, Seq_Len_KV, H_Q, Head_Dim) -> (B, H_Q, Seq_Len_KV, Head_Dim)
keys = keys.transpose(1, 2)
# (B, Seq_Len_KV, H_Q, Head_Dim) -> (B, H_Q, Seq_Len_KV, Head_Dim)
values = values.transpose(1, 2)
# (B, H_Q, 1, Head_Dim) @ (B, H_Q, Head_Dim, Seq_Len_KV) -> (B, H_Q, 1, Seq_Len_KV)
scores = torch.matmul(xq, keys.transpose(2, 3)) / math.sqrt(self.head_dim)
# (B, H_Q, 1, Seq_Len_KV) -> (B, H_Q, 1, Seq_Len_KV)
scores = F.softmax(scores.float(), dim=-1).type_as(xq)
# (B, H_Q, 1, Seq_Len) @ (B, H_Q, Seq_Len_KV, Head_Dim) -> (B, H_Q, 1, Head_Dim)
output = torch.matmul(scores, values)
# (B, H_Q, 1, Head_Dim) -> (B, 1, H_Q, Head_Dim) -> (B, 1, Dim)
output = (output.transpose(1, 2).contiguous().view(batch_size, seq_len, -1))
return self.wo(output) # (B, 1, Dim) -> (B, 1, Dim)
class FeedForward(nn.Module):
def __init__(
self,
args: ModelArgs
):
super().__init__()
hidden_dim = 4 * args.dim
hidden_dim = int(2 * hidden_dim / 3)
if args.ffn_dim_multiplier is not None:
hidden_dim = int(args.ffn_dim_multiplier * hidden_dim)
# Round the hidden_dim to the nearest multiple of the multiple_of parameter
hidden_dim = args.multiple_of * ((hidden_dim + args.multiple_of - 1) // args.multiple_of)
self.w1 = nn.Linear(args.dim, hidden_dim, bias=False)
self.w2 = nn.Linear(hidden_dim, args.dim, bias=False)
self.w3 = nn.Linear(args.dim, hidden_dim, bias=False)
def forward(self, x: torch.Tensor):
# (B, Seq_Len, Dim) --> (B, Seq_Len, Hidden_Dim)
swish = F.silu(self.w1(x))
# (B, Seq_Len, Dim) --> (B, Seq_Len, Hidden_Dim)
x_V = self.w3(x)
# (B, Seq_Len, Hidden_Dim) * (B, Seq_Len, Hidden_Dim) --> (B, Seq_Len, Hidden_Dim)
x = swish * x_V
# (B, Seq_Len, Hidden_Dim) --> (B, Seq_Len, Dim)
x = self.w2(x)
return x
class EncoderBlock(nn.Module):
def __init__(self, args: ModelArgs):
super().__init__()
self.n_heads = args.n_heads
self.dim = args.dim
self.head_dim = args.dim // args.n_heads
self.attention = SelfAttention(args)
self.feed_forward = FeedForward(args)
# Normalization BEFORE the attention block
self.attention_norm = RMSNorm(args.dim, eps=args.norm_eps)
# Normalization BEFORE the feed forward block
self.ffn_norm = RMSNorm(args.dim, eps=args.norm_eps)
def forward(self, x: torch.Tensor, start_pos: int, freqs_complex: torch.Tensor):
# (B, Seq_Len, Dim) + (B, Seq_Len, Dim) --> (B, Seq_Len, Dim)
h = x + self.attention.forward(
self.attention_norm(x), start_pos, freqs_complex
)
# (B, Seq_Len, Dim) + (B, Seq_Len, Dim) --> (B, Seq_Len, Dim)
out = h + self.feed_forward.forward(self.ffn_norm(h))
return out
class Transformer(nn.Module):
def __init__(self, args: ModelArgs):
super().__init__()
assert args.vocab_size != -1, "Vocab size must be set"
self.args = args
self.vocab_size = args.vocab_size
self.n_layers = args.n_layers
self.tok_embeddings = nn.Embedding(self.vocab_size, args.dim)
self.layers = nn.ModuleList()
for layer_id in range(args.n_layers):
self.layers.append(EncoderBlock(args))
self.norm = RMSNorm(args.dim, eps=args.norm_eps)
self.output = nn.Linear(args.dim, self.vocab_size, bias=False)
self.freqs_complex = precompute_theta_pos_frequencies(self.args.dim // self.args.n_heads, self.args.max_seq_len * 2, device=self.args.device)
def forward(self, tokens: torch.Tensor, start_pos: int):
# (B, Seq_Len)
batch_size, seq_len = tokens.shape
assert seq_len == 1, "Only one token at a time can be processed"
# (B, Seq_Len) -> (B, Seq_Len, Dim)
h = self.tok_embeddings(tokens)
# Retrieve the pairs (m, theta) corresponding to the positions [start_pos, start_pos + seq_len]
freqs_complex = self.freqs_complex[start_pos:start_pos + seq_len]
# Consecutively apply all the encoder layers
for layer in self.layers:
h = layer(h, start_pos, freqs_complex)
h = self.norm(h)
output = self.output(h).float()
return output