|
| 1 | +#pragma once |
| 2 | +#include <algorithm> |
| 3 | +#include <cassert> |
| 4 | +#include <numeric> |
| 5 | +#include <vector> |
| 6 | + |
| 7 | +// (i, 0) (0 <= i < bottom.size()) -> (dx_init + j, y) (0 <= j < len) |
| 8 | +// Input: bottom[i] = Initial weight at (i, 0) |
| 9 | +// Output: top[j] = weight at (dx_init + j, y) after transition |
| 10 | +template <class MODINT> |
| 11 | +std::vector<MODINT> |
| 12 | +NorthEastLatticePathsParallel(const std::vector<MODINT> &bottom, long long dx_init, long long y, |
| 13 | + int len, auto convolve) { |
| 14 | + const long long min_x = std::max(dx_init, 0LL), max_x = dx_init + len - 1; |
| 15 | + if (max_x < 0 or y < 0) return std::vector<MODINT>(len); |
| 16 | + |
| 17 | + const long long min_shift = std::max<long long>(0, min_x - ((long long)bottom.size() - 1)), |
| 18 | + max_shift = max_x; |
| 19 | + |
| 20 | + std::vector<MODINT> trans(max_shift - min_shift + 1); |
| 21 | + for (int i = 0; i < (int)trans.size(); ++i) |
| 22 | + trans[i] = MODINT::binom(min_shift + i + y, y); // can be made faster if needed |
| 23 | + std::vector<MODINT> top = convolve(trans, bottom); |
| 24 | + |
| 25 | + top.erase(top.begin(), top.begin() + std::min<long long>(min_x, (long long)bottom.size() - 1)); |
| 26 | + top.resize(max_x - min_x + 1); |
| 27 | + if (dx_init < 0) { |
| 28 | + std::vector<MODINT> tmp(-dx_init); |
| 29 | + top.insert(top.begin(), tmp.begin(), tmp.end()); |
| 30 | + } |
| 31 | + top.shrink_to_fit(); |
| 32 | + assert((int)top.size() == len); |
| 33 | + |
| 34 | + return top; |
| 35 | +} |
| 36 | + |
| 37 | +// (i, 0) (0 <= i < bottom.size()) -> (x, dy_init + j) (0 <= j < len) |
| 38 | +// Input: bottom[i] = Initial weight at (i, 0) |
| 39 | +// Output: right[j] = weight at (x, dy_init + j) after transition |
| 40 | +template <class MODINT> |
| 41 | +std::vector<MODINT> NorthEastLatticePathsVertical(const std::vector<MODINT> &bottom, int x, |
| 42 | + int dy_init, int len, auto convolve) { |
| 43 | + const int ylo = std::max(dy_init, 0), yhi = dy_init + len; |
| 44 | + if (yhi <= 0 or x < 0) return std::vector<MODINT>(len); |
| 45 | + |
| 46 | + // (i, 0) -> (x, y) : binom(x - i, y) |
| 47 | + // f[i] -> g[x + y - ylo] : (x + y - i)! / (x - i)! y! |
| 48 | + std::vector<MODINT> tmp = bottom; |
| 49 | + if ((int)tmp.size() > x + 1) tmp.resize(x + 1); |
| 50 | + |
| 51 | + for (int i = 0; i < (int)tmp.size(); ++i) tmp[i] *= MODINT::facinv(x - i); |
| 52 | + |
| 53 | + std::vector<MODINT> trans(x + yhi); |
| 54 | + for (int i = 0; i < (int)trans.size(); ++i) trans[i] = MODINT::fac(i + ylo); |
| 55 | + tmp = convolve(trans, tmp); |
| 56 | + |
| 57 | + std::vector<MODINT> right(yhi - ylo); |
| 58 | + for (int y = ylo; y < yhi; ++y) right.at(y - ylo) = tmp.at(x + y - ylo) * MODINT::facinv(y); |
| 59 | + |
| 60 | + if (dy_init < 0) { |
| 61 | + std::vector<MODINT> tmp(-dy_init); |
| 62 | + right.insert(right.begin(), tmp.begin(), tmp.end()); |
| 63 | + } |
| 64 | + right.shrink_to_fit(); |
| 65 | + assert((int)right.size() == len); |
| 66 | + |
| 67 | + return right; |
| 68 | +} |
| 69 | + |
| 70 | +// Solve DP below in O((h + w)log(h + w)) (if `convolve()` is O(n log n)) |
| 71 | +// 1. dp[0, 0:h] += left[:] |
| 72 | +// 2. dp[0:w, 0] += bottom[:] |
| 73 | +// 3. dp[i, j] := dp[i-1, j] + dp[i, j-1] |
| 74 | +// 4. return (right = dp[w-1, 0:h], top = dp[0:w, h-1] |
| 75 | +template <class MODINT> |
| 76 | +auto NorthEastLatticePathsInRectangle(const std::vector<MODINT> &left, |
| 77 | + const std::vector<MODINT> &bottom, auto convolve) { |
| 78 | + struct Result { |
| 79 | + std::vector<MODINT> right, top; |
| 80 | + }; |
| 81 | + |
| 82 | + const int h = left.size(), w = bottom.size(); |
| 83 | + if (h == 0 or w == 0) return Result{left, bottom}; |
| 84 | + |
| 85 | + auto right = NorthEastLatticePathsParallel(left, 0, w - 1, h, convolve); |
| 86 | + auto top = NorthEastLatticePathsParallel(bottom, 0, h - 1, w, convolve); |
| 87 | + |
| 88 | + const auto right2 = NorthEastLatticePathsVertical(bottom, w - 1, 0, h, convolve); |
| 89 | + for (int i = 0; i < (int)right2.size(); ++i) right[i] += right2[i]; |
| 90 | + |
| 91 | + const auto top2 = NorthEastLatticePathsVertical(left, h - 1, 0, w, convolve); |
| 92 | + for (int i = 0; i < (int)top2.size(); ++i) top[i] += top2[i]; |
| 93 | + |
| 94 | + return Result{right, top}; |
| 95 | +} |
| 96 | + |
| 97 | +// a) Lattice paths from (*, 0) / (0, *). Count paths ending at (w - 1, *) or absorbed at (i, ub[i])s. |
| 98 | +// b) In other words, count sequences satisfying 0 <= a_i < ub[i] |
| 99 | +// c) In other words, solve DP below: |
| 100 | +// 1. dp[0:w, 0] += bottom[:], dp[0, 0:ub[0]] += left[:] |
| 101 | +// 2. dp[i, j + 1] += dp[i, j] |
| 102 | +// 3. dp[i + 1, j] += dp[i, j] (j < ub[i]) |
| 103 | +// 4. return dp[w-1, 0:ub[w-1]] as right, dp[i, ub[i] - 1] as top |
| 104 | +// Complexity: O((h + w) (log(h + w))^2) (if `convolve()` is O(n log n)) |
| 105 | +// Requirement: ub is non-decreasing |
| 106 | +template <class MODINT> |
| 107 | +auto NorthEastLatticePathsBounded(const std::vector<int> &ub, const std::vector<MODINT> &left, |
| 108 | + const std::vector<MODINT> &bottom, auto convolve) { |
| 109 | + struct Result { |
| 110 | + std::vector<MODINT> right, top; |
| 111 | + }; |
| 112 | + |
| 113 | + assert(ub.size() == bottom.size()); |
| 114 | + if (ub.empty()) return Result{left, {}}; |
| 115 | + |
| 116 | + assert(ub.front() == (int)left.size()); |
| 117 | + assert(ub.front() >= 0); |
| 118 | + for (int i = 1; i < (int)ub.size(); ++i) assert(ub[i] >= ub[i - 1]); |
| 119 | + |
| 120 | + if (ub.back() <= 0) return Result{{}, bottom}; |
| 121 | + |
| 122 | + if (const int n = bottom.size(); n > 64 and ub.back() > 64) { // 64: parameter |
| 123 | + const int l = n / 2, r = n - l; |
| 124 | + const int b = ub[l]; |
| 125 | + |
| 126 | + auto [right1, top1] = NorthEastLatticePathsBounded<MODINT>( |
| 127 | + {ub.begin(), ub.begin() + l}, left, {bottom.begin(), bottom.begin() + l}, convolve); |
| 128 | + right1.resize(b); |
| 129 | + auto [right, out2] = NorthEastLatticePathsInRectangle<MODINT>( |
| 130 | + right1, {bottom.begin() + l, bottom.end()}, convolve); |
| 131 | + |
| 132 | + std::vector<int> ub_next(r); |
| 133 | + for (int i = 0; i < r; ++i) ub_next[i] = ub[l + i] - b; |
| 134 | + const auto [right3, top3] = |
| 135 | + NorthEastLatticePathsBounded<MODINT>(ub_next, {}, out2, convolve); |
| 136 | + right.insert(right.end(), right3.begin(), right3.end()); |
| 137 | + top1.insert(top1.end(), top3.begin(), top3.end()); |
| 138 | + return Result{right, top1}; |
| 139 | + } else { |
| 140 | + std::vector<MODINT> dp = left; |
| 141 | + std::vector<MODINT> top = bottom; |
| 142 | + dp.reserve(ub.back()); |
| 143 | + for (int i = 0; i < n; ++i) { |
| 144 | + dp.resize(ub[i], 0); |
| 145 | + if (dp.empty()) continue; |
| 146 | + dp[0] += bottom[i]; |
| 147 | + for (int j = 1; j < (int)dp.size(); ++j) dp[j] += dp[j - 1]; |
| 148 | + top[i] = dp.back(); |
| 149 | + } |
| 150 | + return Result{dp, top}; |
| 151 | + } |
| 152 | +} |
| 153 | + |
| 154 | +// Lattice paths from (0, *). Count paths ending at (w - 1, *). In other words, solve DP below: |
| 155 | +// 1. dp[0, lb[0]:ub[0]] += left[:] |
| 156 | +// 2. dp[i, j + 1] += dp[i, j] (j + 1 < ub[i]) |
| 157 | +// 3. dp[i + 1, j] += dp[i, j] (lb[i + 1] <= j) |
| 158 | +// 4. return dp[w-1, lb[w-1]:ub[w-1]] |
| 159 | +// Complexity: O((h + w) (log(h + w))^2) (if `convolve()` is O(n log n)) |
| 160 | +// Requirement: lb/ub is non-decreasing |
| 161 | +template <class MODINT> |
| 162 | +std::vector<MODINT> |
| 163 | +NorthEastLatticePathsBothBounded(const std::vector<int> &lb, const std::vector<int> &ub, |
| 164 | + const std::vector<MODINT> &left, auto convolve) { |
| 165 | + assert(lb.size() == ub.size()); |
| 166 | + |
| 167 | + const int n = ub.size(); |
| 168 | + if (n == 0) return left; |
| 169 | + |
| 170 | + assert((int)left.size() == ub[0] - lb[0]); |
| 171 | + for (int i = 1; i < n; ++i) { |
| 172 | + assert(lb[i - 1] <= lb[i]); |
| 173 | + assert(ub[i - 1] <= ub[i]); |
| 174 | + } |
| 175 | + |
| 176 | + for (int i = 0; i < n; ++i) { |
| 177 | + if (lb[i] >= ub[i]) return std::vector<MODINT>(ub.back() - lb.back()); |
| 178 | + } |
| 179 | + |
| 180 | + int x = 0; |
| 181 | + std::vector<MODINT> dp_left = left; |
| 182 | + std::vector<int> tmp_ub; |
| 183 | + while (true) { |
| 184 | + dp_left.resize(ub[x] - lb[x], MODINT{0}); |
| 185 | + |
| 186 | + const int x1 = std::upper_bound(ub.begin() + x + 1, ub.begin() + n, ub[x]) - ub.begin(); |
| 187 | + const int x2 = std::lower_bound(lb.begin() + x1, lb.begin() + n, ub[x]) - lb.begin(); |
| 188 | + const int x3 = std::upper_bound(lb.begin() + x2, lb.begin() + n, ub[x]) - lb.begin(); |
| 189 | + |
| 190 | + tmp_ub.assign(dp_left.size(), x2 - x); |
| 191 | + for (int i = x2 - 1; i >= x; --i) { |
| 192 | + if (const int d = lb[i] - lb[x] - 1; d >= 0 and d < (int)tmp_ub.size()) { |
| 193 | + tmp_ub[d] = i - x; |
| 194 | + } |
| 195 | + } |
| 196 | + for (int j = (int)tmp_ub.size() - 1; j; --j) |
| 197 | + tmp_ub[j - 1] = std::min(tmp_ub[j - 1], tmp_ub[j]); |
| 198 | + |
| 199 | + auto [next_dp, southeast] = NorthEastLatticePathsBounded( |
| 200 | + tmp_ub, std::vector<MODINT>(tmp_ub.front()), dp_left, convolve); |
| 201 | + next_dp.erase(next_dp.begin(), next_dp.begin() + (x1 - x)); |
| 202 | + assert((int)next_dp.size() == x2 - x1); |
| 203 | + |
| 204 | + if (x1 < x3) { |
| 205 | + next_dp.resize(x3 - x1, MODINT{0}); |
| 206 | + tmp_ub.resize(x3 - x1); |
| 207 | + for (int i = x1; i < x3; ++i) tmp_ub[i - x1] = ub[i] - ub[x]; |
| 208 | + next_dp = NorthEastLatticePathsBounded( |
| 209 | + tmp_ub, std::vector<MODINT>(tmp_ub.front()), next_dp, convolve) |
| 210 | + .right; |
| 211 | + } else { |
| 212 | + next_dp.clear(); |
| 213 | + } |
| 214 | + |
| 215 | + if (x3 >= n) { |
| 216 | + std::vector<MODINT> ret = southeast; |
| 217 | + ret.insert(ret.end(), next_dp.begin(), next_dp.end()); |
| 218 | + ret.erase(ret.begin(), ret.begin() + (lb[n - 1] - lb[x])); |
| 219 | + assert((int)ret.size() == ub[n - 1] - lb[n - 1]); |
| 220 | + return ret; |
| 221 | + } else { |
| 222 | + next_dp.erase(next_dp.begin(), next_dp.begin() + (lb[x3] - ub[x])); |
| 223 | + x = x3; |
| 224 | + dp_left = std::move(next_dp); |
| 225 | + } |
| 226 | + } |
| 227 | +} |
| 228 | + |
| 229 | +// Count nonnegative non-decreasing integer sequence `a` satisfying a[i] < ub[i] |
| 230 | +// Complexity: O(n log^2(n)) (if `convolve()` is O(n log n)) |
| 231 | +template <class MODINT> MODINT CountBoundedMonotoneSequence(std::vector<int> ub, auto convolve) { |
| 232 | + const int n = ub.size(); |
| 233 | + assert(n > 0); |
| 234 | + for (int i = n - 1; i; --i) ub[i - 1] = std::min(ub[i - 1], ub[i]); |
| 235 | + if (ub.front() <= 0) return MODINT{0}; |
| 236 | + |
| 237 | + std::vector<MODINT> bottom(ub.size()), left(ub.front()); |
| 238 | + bottom.front() = 1; |
| 239 | + std::vector<MODINT> ret = NorthEastLatticePathsBounded(ub, left, bottom, convolve).right; |
| 240 | + return std::accumulate(ret.begin(), ret.end(), MODINT{}); |
| 241 | +} |
| 242 | + |
| 243 | +// Count nonnegative non-decreasing integer sequence `a` satisfying lb[i] <= a[i] < ub[i] |
| 244 | +// Complexity: O(n log^2(n)) (if `convolve()` is O(n log n)) |
| 245 | +// https://noshi91.hatenablog.com/entry/2023/07/21/235339 |
| 246 | +// Verify: https://judge.yosupo.jp/problem/number_of_increasing_sequences_between_two_sequences |
| 247 | +template <class MODINT> |
| 248 | +MODINT CountBoundedMonotoneSequence(std::vector<int> lb, std::vector<int> ub, auto convolve) { |
| 249 | + assert(lb.size() == ub.size()); |
| 250 | + |
| 251 | + const int n = ub.size(); |
| 252 | + if (n == 0) return MODINT{1}; |
| 253 | + |
| 254 | + for (int i = 1; i < n; ++i) lb[i] = std::max(lb[i - 1], lb[i]); |
| 255 | + for (int i = n - 1; i; --i) ub[i - 1] = std::min(ub[i - 1], ub[i]); |
| 256 | + |
| 257 | + for (int i = 0; i < n; ++i) { |
| 258 | + if (lb[i] >= ub[i]) return MODINT{0}; |
| 259 | + } |
| 260 | + |
| 261 | + const int k = lb.back(); |
| 262 | + lb.insert(lb.begin(), lb.front()); // len(lb) == n + 1 |
| 263 | + lb.pop_back(); |
| 264 | + |
| 265 | + std::vector<MODINT> init(ub.front() - lb.front()); |
| 266 | + init.at(0) = 1; |
| 267 | + |
| 268 | + auto res = NorthEastLatticePathsBothBounded(lb, ub, init, convolve); |
| 269 | + res.erase(res.begin(), res.begin() + (k - lb.back())); |
| 270 | + return std::accumulate(res.begin(), res.end(), MODINT{}); |
| 271 | +} |
0 commit comments