forked from purdue-biorobotics/flappy
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathsimulation_maneuver.py
931 lines (784 loc) · 33.6 KB
/
simulation_maneuver.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
########################## FWMAV Simulation #########################
# Version 0.1
# Fan Fei Feb 2018
# FWMAV simulation with dual motor driven robotic flapper
# PID controller using split cycle mechanism
#######################################################################
import numpy as np
import random
from Flappy.envs.fwmav import FWMAV
import pydart2 as pydart
import threading
import click
import time
from pydart2.gui.glut.window import GLUTWindow
from pydart2.gui.trackball import Trackball
import OpenGL.GLUT as GLUT
#from controller_no_base import PIDController
#from arc_xy_arc_z_no_base import PIDController
#from controller import PIDController
#from pid_xy_arc_z_maneuver import PIDController
from Flappy.envs.controllers.pid_controller import PIDController
#from arc_xy_arc_z import PIDController
class Simulation:
metadata = {
'render.modes' : ['human', 'rgb_array'],
'video.frames_per_second' : 20
}
def __init__(self, mav_config_list, sim_config):
self.dt = 1/sim_config['f_sim']
self.dt_d = 1/sim_config['f_driver']
self.dt_c = 1/sim_config['f_control']
self.dt_s = 1/sim_config['f_sensor']
self.dt_imu = 1/sim_config['f_imu']
self.dt_vicon = 1/sim_config['f_vicon']
self.phantom_sensor = sim_config['phantom_sensor']
self.fps = 24
self.sim_on = False
self.observation = np.zeros([18],dtype=np.float64)
self.reward = 0
self.done = False
self.config = sim_config
# initialize pydart world and create ground
self.init_world()
# add flapper in world, flapper skeleton wrapped in FWMAV and configured in FWMAV
# 0 = no trim, 1 = with trim
self.flapper1 = FWMAV(mav_config_list[6], self.world, self.dt_d) #2 is latest trim with base, 4 is without base, 6 is with small base
self.states = self.flapper1.get_states()
# initialize glut window
self.init_glut((800, 600))
self.seed() # set random seed
self.reset() # call reset before simulation
# initialize output data
self.data={}
self.data['t']=[]
self.data['left_FN']=[]
self.data['left_stroke']=[]
self.data['left_rotate']=[]
self.data['left_spanCoP']=[]
self.data['left_chordCoP']=[]
self.data['left_M_aero']=[]
self.data['left_M_rd']=[]
self.data['right_FN']=[]
self.data['right_stroke']=[]
self.data['right_rotate']=[]
self.data['right_spanCoP']=[]
self.data['right_chordCoP']=[]
self.data['right_M_aero']=[]
self.data['right_M_rd']=[]
self.data['motor_torque']=[]
self.data['magnetic_torque']=[]
self.data['inertia_torque']=[]
self.data['damping_torque']=[]
self.data['friction_torque']=[]
self.data['back_EMF']=[]
self.data['current']=[]
self.data['max_voltage']=[]
self.data['voltage_diff']=[]
self.data['voltage_bias']=[]
self.data['split_cycle']=[]
self.data['left_voltage']=[]
self.data['right_voltage']=[]
self.data['z']=[]
self.data['z_dot']=[]
self.data['z_ddot']=[]
self.data['roll']=[]
self.data['pitch']=[]
self.data['yaw']=[]
self.data['x']=[]
self.data['y']=[]
self.total_action_lb = np.array([0, -3, -3.5, -0.15])
self.total_action_ub = np.array([18.0, 3, 3.5, 0.15])
self.normalized_action_old = np.array([0, 0, 0, 0])
def update_state(self):
self.states = self.flapper1.get_states()
def get_state(self):
state = self.states
return state
def get_observation(self):
# observations are the following
# rotation matrix
# positions
# linear velocities
# angular velocities
observation = np.zeros([18],dtype=np.float64)
# get full states
flapper1_states = self.states
# create rotation matrix
roll_angle = flapper1_states['body_positions'][0]
pitch_angle = flapper1_states['body_positions'][1]
yaw_angle = flapper1_states['body_positions'][2]
# wrap yaw error 180
# print('yaw_error in observation')
# print(yaw_error)
R = self.euler_2_R(roll_angle, pitch_angle, yaw_angle)
observation[0:9] = R.reshape(-1)
# R_ = self.flapper1.flapper_skel.bodynode('torso').world_transform()
# print(R)
# print(R_)
# other states
observation[9] = flapper1_states['body_positions'][3] # special x
observation[10] = flapper1_states['body_positions'][4] # special y
observation[11] = flapper1_states['body_positions'][5] # special z
observation[12] = flapper1_states['body_spatial_velocities'][0] # spatial x_dot
observation[13] = flapper1_states['body_spatial_velocities'][1] # spatial y_dot
observation[14] = flapper1_states['body_spatial_velocities'][2] # spatial z_dot
observation[15] = flapper1_states['body_velocities'][0] # p
observation[16] = flapper1_states['body_velocities'][1] # q
observation[17] = flapper1_states['body_velocities'][2] # r
return observation
def get_reward(self, action):
# reward = 0
# flapper1_states = self.states
# position = flapper1_states['body_positions'][3:6]
# position_target = np.array([[0.0], [0.0], [0.0]])
# position_error = position_target - position
# angular_position = flapper1_states['body_positions'][0:3]
# angular_position_target = np.array([[0.0], [0.0], [0.0]])
# angular_position_error = angular_position_target - angular_position
# # wrap 180
# # if (angular_position_error[2] > 3*np.pi or angular_position_error[2] < -3*np.pi):
# # angular_position_error[2] = np.fmod(angular_position_error[2],2*np.pi)
# # if (angular_position_error[2] > np.pi):
# # angular_position_error[2] = angular_position_error[2] - 2*np.pi
# # if (angular_position_error[2] < - np.pi):
# # angular_position_error[2] = angular_position_error[2] + 2*np.pi
# linear_velocity = flapper1_states['body_spatial_velocities']
# angular_velocity = flapper1_states['body_velocities'][0:3]
# # roll = self.states['body_positions'][0]
# # pitch = self.states['body_positions'][1]
# # yaw = self.states['body_positions'][2]
# # x = self.states['body_positions'][3]
# # y = self.states['body_positions'][4]
# # z = self.states['body_positions'][5]
# # distance =((x+0.35)**2 + y**2 + z**2)**0.5
# normalized_action = action/(self.total_action_ub - self.total_action_lb)*2
# normalized_action[0] = (action[0] - self.total_action_lb[0])/(self.total_action_ub[0] - self.total_action_lb[0])
# # print('normalized_action:')
# # print(normalized_action)
# # the change of control as part of the cost
# d_normalized_action = normalized_action - self.normalized_action_old
# self.normalized_action_old = normalized_action
# control_cost = 2e-2*np.sum(np.square(normalized_action))
# d_control_cost = 2*np.sum(np.square(d_normalized_action))
# # if distance < 0.075 and abs(yaw-np.pi)<0.5: # 0.5rad = 29deg
# # control_cost = 1e-2*np.sum(np.square(action))
# #control_cost = 1e-3*np.sum(np.square(action))
# position_cost = 4e-1*np.linalg.norm(position_error)
# angular_position_cost = 1e-1*np.linalg.norm(angular_position_error)
# velocity_cots = 5e-2*np.linalg.norm(linear_velocity)
# angular_velocity_cost = 5e-3*np.linalg.norm(angular_velocity)
# stability_cost = position_cost + angular_position_cost + velocity_cots + angular_velocity_cost
# cost = (control_cost + d_control_cost + stability_cost)*3 # 5 is tight, good for position control, 3 is looser
# # body x axis projection along X axis
# R = self.flapper1.flapper_skel.bodynode('torso').world_transform()
# i_hat = R[0:3,0]
# j_hat = R[0:3,1]
# k_hat = R[0:3,2]
# x_projection = np.dot(i_hat,np.array([1,0,0]))
# y_projection = np.dot(j_hat,np.array([0,1,0]))
# z_projection = np.dot(k_hat,np.array([0,0,1]))
# # only negative reward when head (z) points downward
# if z_projection > 0:
# z_projection = 0
# # distance to -0.35yz plane
# # dis_yz = flapper1_states['body_positions'][3]+0.35
# # #negative reward from x= -0.35 to x=-0.1
# # dis_yz_reward = -0.25 + dis_yz
# # if dis_yz_reward > 0:
# # dis_yz_reward = 0
# # distance to -0.75xz plane
# dis_xz = flapper1_states['body_positions'][2]+0.75
# # #negative reward from y= -0.75 to y=-0.1
# dis_xz_reward = -0.65 + dis_xz
# if dis_xz_reward > 0:
# dis_xz_reward = 0
# #reward = 1/(cost**2+1e-6) + 4*x_projection + 1*z_projection + 12*dis_yz_reward
# reward = 1/(cost**2+1e-6) -4*x_projection + 4*y_projection + 1*z_projection + 12*dis_xz_reward
'''replaced with reward from v2/simulation_manuver.py'''
reward = 0
flapper1_states = self.states
position = flapper1_states['body_positions'][3:6]
position_target = np.array([[0.0], [0.0], [0.5]])
position_error = position_target - position
angular_position = flapper1_states['body_positions'][0:3]
angular_position_target = np.array([[0.0], [0.0], [0.0]])
angular_position_error = angular_position_target - angular_position
# wrap 180
# if (angular_position_error[2] > 3*np.pi or angular_position_error[2] < -3*np.pi):
# angular_position_error[2] = np.fmod(angular_position_error[2],2*np.pi)
# if (angular_position_error[2] > np.pi):
# angular_position_error[2] = angular_position_error[2] - 2*np.pi
# if (angular_position_error[2] < - np.pi):
# angular_position_error[2] = angular_position_error[2] + 2*np.pi
linear_velocity = flapper1_states['body_spatial_velocities']
angular_velocity = flapper1_states['body_velocities'][0:3]
print("x_angular_velocity = %.5f" % angular_velocity[0], end="\n\r")
print("y_angular_velocity = %.5f" % angular_velocity[1], end="\n\r")
'''TODO: negative reward for large angular velocity'''
# roll = self.states['body_positions'][0]
# pitch = self.states['body_positions'][1]
# yaw = self.states['body_positions'][2]
# x = self.states['body_positions'][3]
# y = self.states['body_positions'][4]
# z = self.states['body_positions'][5]
# distance =((x+0.35)**2 + y**2 + z**2)**0.5
normalized_action = action/(self.total_action_ub - self.total_action_lb)*2
normalized_action[0] = (action[0] - self.total_action_lb[0])/(self.total_action_ub[0] - self.total_action_lb[0])
# print('normalized_action:')
# print(normalized_action)
# the change of control as part of the cost
d_normalized_action = normalized_action - self.normalized_action_old
self.normalized_action_old = normalized_action
control_cost = 1e-2*np.sum(np.square(normalized_action))
d_control_cost = 1*np.sum(np.square(d_normalized_action))
# if distance < 0.075 and abs(yaw-np.pi)<0.5: # 0.5rad = 29deg
# control_cost = 1e-2*np.sum(np.square(action))
#control_cost = 1e-3*np.sum(np.square(action))
position_cost_raw = np.linalg.norm(position_error)
angular_position_cost = np.linalg.norm(angular_position_error)
velocity_cost_raw = np.linalg.norm(linear_velocity)
angular_velocity_cost_raw = np.linalg.norm(angular_velocity)
#stability_cost = 4e-1*position_cost + 6e-2*angular_position_cost + 5e-2*velocity_cots + 1e-3*angular_velocity_cost
#cost = (control_cost + d_control_cost + stability_cost)*3 # 5 is tight, good for position control, 3 is looser
# body x axis projection along X axis
R = self.flapper1.flapper_skel.bodynode('torso').world_transform()
i_hat = R[0:3,0]
j_hat = R[0:3,1]
k_hat = R[0:3,2]
x_projection = np.dot(i_hat,np.array([1,0,0]))
y_projection = np.dot(k_hat,np.array([0,1,0]))
z_projection = np.dot(k_hat,np.array([0,0,1]))
# print("z_projection = %.5f" % z_projection, end="\n\r")
#print("x_projection = %.5f" % x_projection, end="\n\r")
#print("y_projection = %.5f" % y_projection, end="\n\r")
reward_proj = -10 * abs(x_projection) + y_projection
if z_projection < -0.8:
self.upside_down = 1
stage_flag = self.upside_down
k_ep_cost = 100
k_omega_cost = 100
#k_z_drift_cost = 1000
position_cost = 1/(position_cost_raw**2 + 1)
angular_velocity_cost = 1/(angular_velocity_cost_raw**2 + 1)
stability_cost = k_ep_cost*position_cost + k_omega_cost*angular_velocity_cost
k_1 = 6
reward_1 = k_1 * stability_cost #zt
# reward_1 = k_2/(cost**2+1e-6)
k_2 = 500
z_proj_reward_up_stage1 = (1 - z_projection)**2
reward_2 = k_2/(z_proj_reward_up_stage1 + 1)
if z_projection < 0:
k_3 = 500
else:
k_3 = 10
z_proj_reward_down_stage1 = (1 + z_projection)**2
z_drift_cost = position[2] - 0.4
# head_down_reward = k_3*z_projection
# reward_4 = k_z_drift_cost*z_drift_cost
reward_3 = k_3/(z_proj_reward_down_stage1 + 1)
k_flag = 300
#reward = stage_flag*(k_flag + reward_1 + reward_2) + (1-stage_flag)*(reward_3 + 30 * reward_proj)
reward = stage_flag*(k_flag + reward_1 + reward_2 - 30 * abs(x_projection)) + (1-stage_flag)*(reward_3 + 30 * reward_proj)
# print("===========================time = %.4f ===========================" % self.world.time(), end="\n\r")
# # # print("action", end="\n\r")
# # # print(action, end="\n\r")
# # # print("normalized_action", end="\n\r")
# # # print(normalized_action, end="\n\r")
# print("control_cost = %.8f" % control_cost, end="\n\r")
# print("d_control_cost = %.8f" % d_control_cost, end="\n\r")
# print("position_cost = %.8f" % position_cost, end="\n\r")
# print("angular_position_cost = %.8f" % angular_position_cost, end="\n\r")
# print("velocity_cots = %.8f" % velocity_cots, end="\n\r")
# print("angular_velocity_cost = %.8f" % angular_velocity_cost, end="\n\r")
# print("cost = %.8f" % cost, end="\n\r")
# print("1/(cost**2+1e-6) = %.8f" % (1/(cost**2+1e-6)), end="\n\r")
# print("4*_projection = %.8f" % (4*x_projection), end="\n\r")
# print("1*z_projection = %.8f" % (1*z_projection), end="\n\r")
# print("12*dis_yz_reward = %.8f" % (12*dis_yz_reward), end="\n\r")
# print("reward = %.8f" % reward, end="\n\r")
return reward
def check_collision(self):
collided = False
if self.world.collision_result.num_contacted_bodies()>0:
collided = True
elif self.world.collision_result.num_contacts()>0:
collided = True
return collided
def get_terminal(self):
done = False
if self.check_collision():
done = True
if self.world.time() > 3:
done = True
if self.observation[9] > 0.1:
done = True
if self.observation[9] < -0.375:
done = True
if abs(self.observation[10]) > 0.2:
done = True
if abs(self.observation[11]) > 0.1:
done = True
R = self.flapper1.flapper_skel.bodynode('torso').world_transform()
i_hat = R[0:3,0]
x_projection = np.dot(i_hat,np.array([1,0,0]))
if self.world.time() > 0.35 and x_projection<0:
done = True
return done
def render(self):
fault = False
self.glutwindow.drawGL()
# if time.time() >= self.next_visulizaiton_time:
# if self.visulization:
# self.glutwindow.drawGL()
# self.next_visulizaiton_time = self.next_visulizaiton_time + 1/self.fps
return fault
def seed(self):
"""
if there is randomness in simulation, set the random seed here
implementation here
"""
return
def reset(self):
self.world.reset()
self.flapper1.reset()
self.sim_on = False
self.paused = False
self.visulization = True
self.next_visulizaiton_time = 1/self.fps + time.time()
self.next_control_time = 0.0
self.elapse_time = 0
self.reached = 0
self.start_time = time.time()
self.states = self.get_state()
self.observation = self.get_observation()
print("Simulation reset", end="\n\r")
return self.states
def set_states(self, positions, velocities):
# two 10x1 column np array
# 0: roll
# 1: pitch
# 2: yaw
# 3: x
# 4: y
# 5: z
# 6: left_stroke
# 7: left_rotate
# 8: right_stroke
# 9: right_rotate
self.flapper1.set_states(positions, velocities)
self.update_state()
def random_init(self):
rpy_limit = 0.2 # 11.4 deg
pqr_limit = 0.1 # 5.7 deg/s
xyz_limit = 0.1 # 10 cm
xyz_dot_limit = 0.1 # 10 cm/s
positions = np.zeros([10,1],dtype=np.float64)
velocities = np.zeros([10,1],dtype=np.float64)
init_attitude = np.random.uniform(-rpy_limit, rpy_limit, size=(3,1))
init_angular_velocity = np.random.uniform(-pqr_limit, pqr_limit, size=(3,1))
init_position = np.random.uniform(-xyz_limit, xyz_limit, size=(3,1))
init_body_velocity = np.random.uniform(-xyz_dot_limit, xyz_dot_limit, size=(3,1))
init_attitude[2] = init_attitude[2]+np.pi
init_position[0] = init_position[0]-0.35
positions[0:3] = init_attitude
positions[3:6] = init_position
# positions[5] = 0.0 # initial z
if positions[3] < -0.35:
positions[3] = -0.35 # initial x
velocities[0:6] = np.concatenate((init_angular_velocity,init_body_velocity), axis = 0)
self.reset()
self.set_states(positions, velocities)
observation = self.observation
self.render()
def step(self, action):
max_voltage = action[0]
voltage_diff = action[1]
voltage_bias = action[2]
split_cycle = action[3]
input_voltage = np.zeros([2],dtype=np.float64)
input_voltage[0] = self.generate_control_signal(34, max_voltage, voltage_diff, voltage_bias, -split_cycle, self.world.time(), 0)
input_voltage[1] = self.generate_control_signal(34, max_voltage, -voltage_diff, voltage_bias, split_cycle, self.world.time(), 0)
input_voltage[0] = np.clip(input_voltage[0], -18, 18)
input_voltage[1] = np.clip(input_voltage[1], -18, 18)
# generate input voltage or use external input
#input_voltage[0] = 12*np.cos(self.flapper1.frequency*2*np.pi*self.world.time())
#input_voltage[1] = 12*np.cos(self.flapper1.frequency*2*np.pi*self.world.time())
# drive flapper aero and motor one step
self.flapper1.step(self.world.time(), input_voltage)
#print(self.flapper1.states['left_stroke_acceleration'], end="\n\r")
# apply stroke force
torques = np.zeros(self.flapper1.flapper_skel.num_dofs())
torques[self.flapper1.flapper_skel.dof('left_stroke').id] = self.flapper1.left_motor.get_torque()
torques[self.flapper1.flapper_skel.dof('right_stroke').id] = self.flapper1.right_motor.get_torque()
self.flapper1.flapper_skel.set_forces(torques)
# left_drive_torque = np.array([0, 0, self.flapper1.left_motor.get_torque()])
# right_drive_torque = np.array([0, 0, -self.flapper1.right_motor.get_torque()])
# self.flapper1.flapper_skel.bodynode('left_leading_edge').set_ext_torque(left_drive_torque, True)
# self.flapper1.flapper_skel.bodynode('right_leading_edge').set_ext_torque(right_drive_torque, True)
# get aero force
left_FN = np.array([self.flapper1.left_wing.GetNormalForce(), 0, 0]) # in wing x direction
right_FN = np.array([self.flapper1.right_wing.GetNormalForce(), 0, 0])
left_CoP = np.array([0, self.flapper1.left_wing.GetSpanCoP(), (-1)*self.flapper1.left_wing.GetChordCoP()])
right_CoP = np.array([0, (-1)*self.flapper1.right_wing.GetSpanCoP(), (-1)*self.flapper1.right_wing.GetChordCoP()])
left_M_rd = np.array([0, self.flapper1.left_wing.GetM_rd(), 0]) # in wing y direction
right_M_rd = np.array([0, self.flapper1.right_wing.GetM_rd(), 0])
# apply aero force and moment on wing
self.flapper1.flapper_skel.bodynode('left_wing').add_ext_force(left_FN, left_CoP, True, True)
self.flapper1.flapper_skel.bodynode('right_wing').add_ext_force(right_FN, right_CoP, True, True)
self.flapper1.flapper_skel.bodynode('left_wing').add_ext_torque(left_M_rd, True)
self.flapper1.flapper_skel.bodynode('right_wing').add_ext_torque(right_M_rd, True)
# step forward the dart simulation
self.world.step()
self.update_state()
# save data
# self.data['t'].append(self.world.time())
# self.data['left_FN'].append(self.flapper1.left_wing.GetNormalForce())
# self.data['left_stroke'].append(self.flapper1.flapper_skel.positions()[self.flapper1.flapper_skel.dof('left_stroke').id])
# self.data['left_rotate'].append(self.flapper1.flapper_skel.positions()[self.flapper1.flapper_skel.dof('left_rotate').id])
# self.data['left_spanCoP'].append(self.flapper1.left_wing.GetSpanCoP())
# self.data['left_chordCoP'].append(self.flapper1.left_wing.GetChordCoP())
# self.data['left_M_aero'].append(self.flapper1.left_wing.GetM_aero())
# self.data['left_M_rd'].append(self.flapper1.left_wing.GetM_rd())
# self.data['right_FN'].append(self.flapper1.right_wing.GetNormalForce())
# self.data['right_stroke'].append(self.flapper1.flapper_skel.positions()[self.flapper1.flapper_skel.dof('right_stroke').id])
# self.data['right_rotate'].append(self.flapper1.flapper_skel.positions()[self.flapper1.flapper_skel.dof('right_rotate').id])
# self.data['right_spanCoP'].append(self.flapper1.right_wing.GetSpanCoP())
# self.data['right_chordCoP'].append(self.flapper1.right_wing.GetChordCoP())
# self.data['right_M_aero'].append(self.flapper1.right_wing.GetM_aero())
# self.data['right_M_rd'].append(self.flapper1.right_wing.GetM_rd())
# self.data['motor_torque'].append(self.flapper1.left_motor.motor_torque)
# self.data['magnetic_torque'].append(self.flapper1.left_motor.magnetic_torque)
# self.data['inertia_torque'].append(self.flapper1.left_motor.inertia_torque)
# self.data['damping_torque'].append(self.flapper1.left_motor.damping_torque)
# self.data['friction_torque'].append(self.flapper1.left_motor.friction_torque)
# self.data['back_EMF'].append(self.flapper1.left_motor.back_EMF)
# self.data['current'].append(self.flapper1.left_motor.current)
# self.data['max_voltage'].append(max_voltage)
# self.data['voltage_diff'].append(voltage_diff)
# self.data['voltage_bias'].append(voltage_bias)
# self.data['split_cycle'].append(split_cycle)
# self.data['left_voltage'].append(input_voltage[0])
# self.data['right_voltage'].append(input_voltage[1])
# self.data['z'].append(self.pid_policy.altitude_)
# self.data['z_dot'].append(self.pid_policy.velocity_z_)
# self.data['z_ddot'].append(self.pid_policy.acceleration_z_)
# self.data['roll'].append(self.pid_policy.roll_angle_)
# self.data['pitch'].append(self.pid_policy.pitch_angle_)
# self.data['yaw'].append(self.pid_policy.yaw_angle_)
# self.data['x'].append(self.pid_policy.pos_current_x_)
# self.data['y'].append(self.pid_policy.pos_current_y_)
# if self.check_collision():
# print("Colision detectecd!", end="\n\r")
# # call reset here
# # self.reset()
self.observation = self.get_observation()
self.reward = self.get_reward(action)
self.done = self.get_terminal()
return self.states
def generate_control_signal(self, f, Umax, delta, bias, sc, t, phase_0):
V = Umax + delta
V0 = bias
sigma = 0.5+sc
T = 1/f
t_phase = phase_0/360*T
t = t+t_phase
period = np.floor(t/T)
t = t-period*T
if 0<=t and t<sigma/f:
u = V*np.cos(2*np.pi*f*(t)/(2*sigma))+V0
elif sigma/f<=t and t<1/f:
u = V*np.cos((2*np.pi*f*(t)-2*np.pi)/(2*(1-sigma)))+V0
else:
u=0
return u
def euler_2_R(self, phi, theta, psi):
R = np.zeros([3,3],dtype=np.float64)
C_phi = np.cos(phi)
S_phi = np.sin(phi)
C_theta = np.cos(theta)
S_theta = np.sin(theta)
C_psi = np.cos(psi)
S_psi = np.sin(psi)
R[0,0] = C_psi*C_theta
R[0,1] = C_psi*S_theta*S_phi - S_psi*C_phi
R[0,2] = C_psi*S_theta*C_phi + S_psi*S_phi
R[1,0] = S_psi*C_theta
R[1,1] = S_psi*S_theta*S_phi + C_psi*C_phi
R[1,2] = S_psi*S_theta*C_phi - C_psi*S_phi
R[2,0] = -S_theta
R[2,1] = C_theta*S_phi
R[2,2] = C_theta*C_phi
return R
def record_data(self):
data_file = open("pydata.txt", "w")
for i in range(len(self.data['t'])):
data_file.write(str(self.data['t'][i]) + "\t" +
str(self.data['left_FN'][i]) + "\t" +
str(self.data['left_stroke'][i]) + "\t" +
str(self.data['left_rotate'][i]) + "\t" +
str(self.data['left_spanCoP'][i]) + "\t" +
str(self.data['left_chordCoP'][i]) + "\t" +
str(self.data['left_M_aero'][i]) + "\t" +
str(self.data['left_M_rd'][i]) + "\t" +
str(self.data['right_FN'][i]) + "\t" +
str(self.data['right_stroke'][i]) + "\t" +
str(self.data['right_rotate'][i]) + "\t" +
str(self.data['right_spanCoP'][i]) + "\t" +
str(self.data['right_chordCoP'][i]) + "\t" +
str(self.data['right_M_aero'][i]) + "\t" +
str(self.data['right_M_rd'][i]) + "\t" +
str(self.data['motor_torque'][i]) + "\t" +
str(self.data['magnetic_torque'][i]) + "\t" +
str(self.data['inertia_torque'][i]) + "\t" +
str(self.data['damping_torque'][i]) + "\t" +
str(self.data['friction_torque'][i]) + "\t" +
str(self.data['back_EMF'][i]) + "\t" +
str(self.data['current'][i]) + "\t" +
str(self.data['max_voltage'][i]) + "\t" +
str(self.data['voltage_diff'][i]) + "\t" +
str(self.data['voltage_bias'][i]) + "\t" +
str(self.data['split_cycle'][i]) + "\t" +
str(self.data['left_voltage'][i]) + "\t" +
str(self.data['right_voltage'][i]) + "\t" +
str(self.data['z'][i]) + "\t" +
str(self.data['z_dot'][i]) + "\t" +
str(self.data['z_ddot'][i]) + "\t" +
str(self.data['roll'][i]) + "\t" +
str(self.data['pitch'][i]) + "\t" +
str(self.data['yaw'][i]) + "\t" +
str(self.data['x'][i]) + "\t" +
str(self.data['y'][i]) + "\n"
)
data_file.close()
def init_world(self):
pydart.init(verbose=False)
print('pydart initialization OK')
self.world = MyWorld(self.dt)
def init_glut(self,window_size = (800,600)):
self.glutwindow = GLUTWindow(self.world, "FWMAV")
GLUT.glutInit(())
GLUT.glutInitDisplayMode(GLUT.GLUT_RGBA |
GLUT.GLUT_DOUBLE |
GLUT.GLUT_MULTISAMPLE |
GLUT.GLUT_ALPHA |
GLUT.GLUT_DEPTH)
GLUT.glutInitWindowSize(*window_size)
GLUT.glutInitWindowPosition(0, 0)
self.glutwindow.window = GLUT.glutCreateWindow(self.glutwindow.title)
self.glutwindow.initGL(*window_size)
self.camera_theta = 75
self.camera_phi = 135
self.camera_horizontal = 0.0
self.camera_vertical = -0.25
self.camera_depth = -1.25
self.camera_angle_increment = 5
self.camera_position_increment = 0.05
self.update_camera()
#self.glutwindow.scene.add_camera(Trackball(theta = self.camera_theta, phi = self.camera_phi, trans=[self.camera_horizontal, self.camera_vertical, self.camera_depth]),"Camera Z up close")
#self.glutwindow.scene.set_camera(2)
self.glutwindow.scene.resize(*window_size)
self.glutwindow.drawGL()
def update_camera(self):
self.glutwindow.scene.replace_camera(0,Trackball(theta = self.camera_theta, phi = self.camera_phi, trans=[self.camera_horizontal, self.camera_vertical, self.camera_depth]))
self.glutwindow.scene.set_camera(0)
self.glutwindow.drawGL()
print("\r")
def run(self,policy = None):
keylistener = KeyListener(1,'Key Thread', 1)
keylistener.start()
self.pid_policy = PIDController(self.dt_c)
if policy != 'pid' and policy !=None:
policy = MyPolicy(policy)
control_action = np.zeros(4)
print("\n")
print("space bar: simulation on/off")
print("'r': reset simulation")
print("'w, a, s, d' to rotate camera")
print("'z, x' to zoom camera")
print("'e, c' to adjust camera height")
print("'v': toggle visulization")
print("'q': quit")
# main loop
while True:
key = keylistener.last_key_press
if key == 'q':
print("Simulation terminated, buh bye!", end="\n\r")
break
elif key == 'r':
self.reset()
elif key == 'o':
self.record_data()
elif key == 'm':
self.random_init()
elif key == ' ':
self.sim_on = not self.sim_on
elif key == 'v':
self.visulization = not self.visulization
print("Visulization = %r" % self.visulization, end="\n\r")
elif key == 'w':
self.camera_theta -= self.camera_angle_increment
self.update_camera()
elif key == 's':
self.camera_theta += self.camera_angle_increment
self.update_camera()
elif key == 'a':
self.camera_phi -= self.camera_angle_increment
self.update_camera()
elif key == 'd':
self.camera_phi += self.camera_angle_increment
self.update_camera()
elif key == 'z':
self.camera_depth += self.camera_position_increment
self.update_camera()
elif key == 'x':
self.camera_depth -= self.camera_position_increment
self.update_camera()
elif key == 'e':
self.camera_vertical += self.camera_position_increment
self.update_camera()
elif key == 'c':
self.camera_vertical -= self.camera_position_increment
self.update_camera()
keylistener.last_key_press = None
if self.world.time()>=20.0:
self.sim_on = False
if self.sim_on:
if self.paused:
print("Simulation running", end="\n\r")
self.paused = False
self.start_time = time.time()
self.next_visulizaiton_time = 1/self.fps + time.time()
if self.world.time()>=self.next_control_time:
self.next_control_time += self.dt_c
# print('update control', end="\n\r")
if policy == None:
control_action = [10,0,0,0]
elif policy == 'pid':
control_action = np.squeeze(self.pid_policy.get_action(self.states,self.dt_c, 1))
else:
action = policy.get_action(self.observation)
# get reached
action_pid = np.squeeze(self.pid_policy.get_action(self.states, self.dt_c, self.reached))
flapper1_states = self.states
x = flapper1_states['body_positions'][3]
x_dot = flapper1_states['body_spatial_velocities'][0] # spatial x_dot
yaw_angle = flapper1_states['body_positions'][2]
# print('yaw_error in action')
# print(yaw_error)
# combine controller action and policy action
control_action = np.clip((action + action_pid), self.total_action_lb, self.total_action_ub)
if self.reached == 0 and x > -0.1 and abs(x_dot) < 1 and abs(yaw_angle) < np.pi/4:
self.reached = 1
if self.reached == 1:
control_action = np.squeeze(self.pid_policy.get_action(self.states,self.dt_c, 1))
# print("reached", end="\n\r")
# print(self.reached, end="\n\r")
# for i in range(20):
# self.step(control_action)
self.step(control_action)
# if policy == None:
# for i in range(20):
# self.step([10,0,0,0])
# elif policy == 'pid':
# action_pid = np.squeeze(self.pid_policy.get_action(self.states,0.002))
# for i in range(20):
# self.step(action_pid)
# else:
# action = policy.get_action(self.observation)
# for i in range(20):
# self.step(action)
if time.time() >= self.next_visulizaiton_time:
if self.world.time()>=20.0:
self.sim_on = not self.sim_on
if self.visulization:
self.glutwindow.drawGL()
self.next_visulizaiton_time = self.next_visulizaiton_time + 1/self.fps
else:
if not self.paused:
self.glutwindow.drawGL()
self.elapse_time += (time.time() - self.start_time)
print("Simulation paused, running time = %.4f" % self.elapse_time, end="\n\r")
self.paused = True
time.sleep(0.01)
return
class MyPolicy():
def __init__(self, policy_name):
import pickle
import os
log_dir = os.path.join(os.getcwd(),'data')
with open(os.path.join(log_dir,policy_name), 'rb') as input:
policy = pickle.load(input)
self.h0w = policy._cached_params[()][0].get_value()
self.h0b = policy._cached_params[()][1].get_value()
self.h1w = policy._cached_params[()][2].get_value()
self.h1b = policy._cached_params[()][3].get_value()
self.ow = policy._cached_params[()][4].get_value()
self.ob = policy._cached_params[()][5].get_value()
# action lb ub are set in fwmav_sim_env.py
self.action_lb = np.array([-5.0, -3, -3.5, -0.15])
self.action_ub = np.array([8.0, 3, 3.5, 0.15])
# ologstd = policy._cached_params[()][6].get_value()
def get_action(self,observation):
h0_out = np.tanh(np.matmul(observation.T, self.h0w) + self.h0b)
h1_out = np.tanh(np.matmul(h0_out, self.h1w) + self.h1b)
action = np.tanh(np.matmul(h1_out, self.ow) + self.ob)
# scale action
scaled_action = self.action_lb + (action + 1.) * 0.5 * (self.action_ub - self.action_lb)
scaled_action = np.clip(scaled_action, self.action_lb, self.action_ub)
return scaled_action
# my world class
class MyWorld(pydart.World):
def __init__(self, dt):
pydart.World.__init__(self, dt)
self.set_gravity([0.0, 0.0, -9.81])
#self.set_collision_detector(0)
print('pydart create_world OK')
# create ground
# filename = "./urdf/ground.urdf"
# self.ground = self.add_skeleton(filename)
def step(self, ):
super(MyWorld, self).step()
# other stuff here
#print("t = %.4f" % self.time(), end="\n\r")
#print(len(self.collision_result.contacts), end="\n\r")
def draw_with_ri(self, ri):
ri.set_color(0, 0, 0)
ri.draw_text([20, 40], "time = %.4fs" % self.t)
ri.set_color(0, 0, 0)
ri.draw_text([20, 80], "frame = %d" % self.frame)
R = self.skeletons[0].bodynode('torso').world_transform()
ri.draw_text([20, 100], "roll = %.4f" % (np.arctan2(R[2,1],R[2,2])/np.pi*180))
ri.draw_text([20, 120], "pitch = %.4f" % (np.arcsin(-R[2,0])/np.pi*180))
ri.draw_text([20, 140], "yaw = %.4f" % (np.arctan2(R[1,0],R[0,0])/np.pi*180))
ri.draw_text([20, 160], "p = %.4f" % (self.skeletons[0].bodynode('torso').com_spatial_velocity()[0]/np.pi*180))
ri.draw_text([20, 180], "q = %.4f" % (self.skeletons[0].bodynode('torso').com_spatial_velocity()[1]/np.pi*180))
ri.draw_text([20, 200], "r = %.4f" % (self.skeletons[0].bodynode('torso').com_spatial_velocity()[2]/np.pi*180))
ri.draw_text([20, 220], "x = %.4f" % self.skeletons[0].positions()[self.skeletons[0].dof('torso_to_world_pos_x').id])
ri.draw_text([20, 240], "y = %.4f" % self.skeletons[0].positions()[self.skeletons[0].dof('torso_to_world_pos_y').id])
ri.draw_text([20, 260], "z = %.4f" % self.skeletons[0].positions()[self.skeletons[0].dof('torso_to_world_pos_z').id])
ri.draw_text([20, 280], "x_dot = %.4f" % self.skeletons[0].bodynode('torso').com_linear_velocity()[0])
ri.draw_text([20, 300], "y_dot = %.4f" % self.skeletons[0].bodynode('torso').com_linear_velocity()[1])
ri.draw_text([20, 320], "z_dot = %.4f" % self.skeletons[0].bodynode('torso').com_linear_velocity()[2])
# visulize force not working
# pl0 = self.skeletons[1].bodynode('left_wing').C
# pl1 = pl0 + 0.01 * np.array([1,0,0])
# ri.set_color(1.0, 0.0, 0.0)
# ri.render_arrow(pl0, pl1, r_base=0.05, head_width=0.1, head_len=0.1)
# keyboard input thread
class KeyListener(threading.Thread):
def __init__(self,threadID,name,counter):
threading.Thread.__init__(self)
self.threadID = threadID
self.name = name
self.counter = counter
self.last_key_press = None
self.new_key_pressed = False
def run(self):
print("Key listening thread started")
# print('Starting ' + self.name)
while True:
self.last_key_press = click.getchar()
if self.last_key_press == 'q':
print("Key listening thread terminated")
break