forked from purdue-biorobotics/flappy
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathfwmav_sim_env_maneuver.py
186 lines (138 loc) · 6.44 KB
/
fwmav_sim_env_maneuver.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
from rllab.envs.base import Env, Step
from rllab.spaces import Box
import numpy as np
import json
#from simulation_maneuver import Simulation
from Flappy.envs.simulation_maneuver import Simulation
#from pid_xy_arc_z_maneuver import PIDController
from Flappy.envs.controllers.pid_controller import PIDController
class FWMAVSimEnv(Env):
def __init__(self):
with open ('./Flappy/envs/config/sim_config.json') as file:
sim_config = json.load(file)
with open('./Flappy/envs/config/mav_config_list.json') as file:
mav_config_list = json.load(file)
self.sim = Simulation(mav_config_list, sim_config)
self.action_lb = np.array([0.0, -3, -3.5, -0.15])
self.action_ub = np.array([18.0, 3, 3.5, 0.15])
@property
def observation_space(self):
return Box(np.array([-1.0, -1.0, -1.0, -1.0, -1.0, -1.0, -1.0, -1.0, -1.0, -1.0, -1.0, -1.0, -1.0, -1.0, -1.0, -100.0, -100.0, -100.0]), np.array([1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 100.0, 100.0, 100.0]))
@property
def action_space(self):
return Box(np.array([-5.0, -3, -3.5, -0.15]), np.array([8.0, 3, 3.5, 0.15])) # double the control authority range here so the policy can over ride the controller action
# def reset(self):
# self.pid_policy = PIDController(self.sim.dt_c)
# rpy_limit = 0.2 # 11.4 deg
# pqr_limit = 0.1 # 5.7 deg/s
# xyz_limit = 0.1 # 10 cm
# xyz_dot_limit = 0.1 # 10 cm/s
# positions = np.zeros([10,1],dtype=np.float64)
# velocities = np.zeros([10,1],dtype=np.float64)
# init_attitude = np.random.uniform(-rpy_limit, rpy_limit, size=(3,1))
# init_angular_velocity = np.random.uniform(-pqr_limit, pqr_limit, size=(3,1))
# init_position = np.random.uniform(-xyz_limit, xyz_limit, size=(3,1))
# init_body_velocity = np.random.uniform(-xyz_dot_limit, xyz_dot_limit, size=(3,1))
# init_attitude[2] = init_attitude[2]+np.pi
# init_position[0] = init_position[0]-0.35
# positions[0:3] = init_attitude
# positions[3:6] = init_position
# # positions[5] = 0.0 # initial z
# if positions[3] < -0.35:
# positions[3] = -0.35 # initial x
# velocities[0:6] = np.concatenate((init_angular_velocity,init_body_velocity), axis = 0)
# self.sim.reset()
# self.sim.set_states(positions, velocities)
# observation = self.sim.observation
# self.reached = 0
# return observation
# # pid controller input
# action_pid = np.squeeze(self.pid_policy.get_action(self.sim.states, self.sim.dt_c, self.reached))
# flapper1_states = self.sim.states
# x = flapper1_states['body_positions'][3]
# x_dot = flapper1_states['body_spatial_velocities'][0] # spatial x_dot
# yaw_angle = flapper1_states['body_positions'][2]
# # combine controller action and policy action
# total_action = np.clip((action + action_pid), self.action_lb, self.action_ub)
# if self.reached == 0 and x > -0.1 and abs(x_dot) < 1 and abs(yaw_angle) < np.pi/4:
# self.reached = 1
# if self.reached == 1:
# total_action = np.clip((action_pid), self.action_lb, self.action_ub)
# # down sample to 500Hz
# for i in range(20):
# self.sim.step(total_action)
# #self.sim.step(action)
# next_observation = self.sim.observation
# reward = self.sim.reward
# done = self.sim.done
# if (np.mod(self.sim.world.frame,60)==0):
# self.sim.render()
# return Step(observation=next_observation, reward=reward, done=done)
'''replaced with code from v2/fwmav_sim_env_maneuver.py'''
def reset(self):
self.pid_policy = PIDController(self.sim.dt_c)
rpy_limit = 0.2 # 11.4 deg
pqr_limit = 0.1 # 5.7 deg/s
xyz_limit = 0.05 # 10 cm
xyz_dot_limit = 0.1 # 10 cm/s
positions = np.zeros([10,1],dtype=np.float64)
velocities = np.zeros([10,1],dtype=np.float64)
init_attitude = np.random.uniform(-rpy_limit, rpy_limit, size=(3,1))
init_angular_velocity = np.random.uniform(-pqr_limit, pqr_limit, size=(3,1))
init_position = np.random.uniform(-xyz_limit, xyz_limit, size=(3,1))
init_body_velocity = np.random.uniform(-xyz_dot_limit, xyz_dot_limit, size=(3,1))
init_attitude[2] = init_attitude[2]+0
init_position[0] = init_position[0]-0
init_position[2] = init_position[2]+0
positions[0:3] = init_attitude # zhi shi dian
positions[3:6] = init_position
positions[5] = 0.5 # initial z
# if positions[3] < -0.28:
# positions[3] = -0.28 # initial x
velocities[0:6] = np.concatenate((init_angular_velocity,init_body_velocity), axis = 0)
self.sim.reset()
self.sim.set_states(positions, velocities)
observation = self.sim.observation
self.sim.upside_down = 0 #zt
self.sim.reached = 0
return observation
def step(self, action):
# pid controller input
action_pid = np.squeeze(self.pid_policy.get_action(self.sim.states, self.sim.dt_c, self.sim.reached))
flapper1_states = self.sim.states
# x = flapper1_states['body_positions'][3]
# x_dot = flapper1_states['body_spatial_velocities'][0] # spatial x_dot
# yaw_angle = flapper1_states['body_positions'][2]
# combine controller action and policy action
action[1] = 0 #zt#switched from 2 to 1
action[3] = 0
total_action = np.clip((action + action_pid), self.action_lb, self.action_ub)
# zt
R = self.sim.flapper1.flapper_skel.bodynode('torso').world_transform()
i_hat = R[0:3,0] #added x project for back flip
k_hat = R[0:3,2]
x_projection = np.dot(i_hat,np.array([1,0,0]))
z_projection = np.dot(k_hat,np.array([0,0,1]))
roll_vel = flapper1_states['body_velocities'][0] # p
pitch_vel = flapper1_states['body_velocities'][1] # q
#if self.sim.reached == 0 and self.sim.upside_down == 1 and z_projection > 0.8 and abs(roll_vel) < 160: #roll_vel<+-200;currently switched to pitch to train back flip
#self.sim.reach
if self.sim.reached == 0 and x_projection < 0.1 and self.sim.upside_down == 1 and z_projection > 0.8 and abs(pitch_vel) < 160: #roll_vel<+-200;currently switched to pitch to train back flip
self.sim.reached = 1
# print("reached = %d" % self.sim.reached, end="\n\r")
# print("upside_down = %d" % self.sim.upside_down, end="\n\r")
# print("z_projection = %d" % z_projection, end="\n\r")
if self.sim.reached == 1:
total_action = np.clip((action_pid), self.action_lb, self.action_ub)
# down sample to 500Hz
for i in range(20):
self.sim.step(total_action)
#self.sim.step(action)
next_observation = self.sim.observation
reward = self.sim.reward
done = self.sim.done
if (np.mod(self.sim.world.frame,60)==0):
self.sim.render()
return Step(observation=next_observation, reward=reward, done=done)
def render(self):
self.sim.render()