-
Notifications
You must be signed in to change notification settings - Fork 11
/
convolve.c
1032 lines (769 loc) · 32.1 KB
/
convolve.c
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
/* Copyright (C) 2012 Henry Gomersall <[email protected]>
*
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions are met:
* * Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* * Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
* * Neither the name of the organization nor the
* names of its contributors may be used to endorse or promote products
* derived from this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE AUTHOR ''AS IS'' AND ANY
* EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
* WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
* DISCLAIMED. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY
* DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
* (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
* LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND
* ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
* SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
#include "convolve.h"
#include <string.h>
#include <stdio.h>
#define SSE_SIMD_LENGTH 4
#define AVX_SIMD_LENGTH 8
#define KERNEL_LENGTH 16
/* A set of convolution routines, all of which present the same interface
* (albeit, with some of them having restrictions on the size and shape of
* the input data)
*
* ``out'' is filled with the same values as would be returned by
* numpy.convolve(in, kernel, mode='valid').
*
* All the convolve functions have the same signature and interface.
*
* */
/* A simple implementation of a 1D convolution that just iterates over
* scalar values of the input array.
*
* Returns the same as numpy.convolve(in, kernel, mode='valid')
* */
int convolve_naive(float* in, float* out, int length,
float* kernel, int kernel_length)
{
for(int i=0; i<=length-kernel_length; i++){
out[i] = 0.0;
for(int k=0; k<kernel_length; k++){
out[i] += in[i+k] * kernel[kernel_length - k - 1];
}
}
return 0;
}
int convolve_reversed_naive(float* in, float* out, int length,
float* kernel, int kernel_length)
{
for(int i=0; i<=length-kernel_length; i++){
out[i] = 0.0;
}
for(int k=0; k<kernel_length; k++){
float kernel_value = kernel[kernel_length - k - 1];
for(int i=0; i<=length-kernel_length; i++){
out[i] += in[i+k] * kernel_value;
}
}
return 0;
}
#ifdef SSE3
/* Vectorize the algorithm to compute 4 output samples in parallel.
*
* Each kernel value is repeated 4 times, which can then be used on
* 4 input samples in parallel. Stepping over these as in naive
* means that we get 4 output samples for each inner kernel loop.
*
* For this, we need to pre-reverse the kernel, rather than doing
* the loopup each time in the inner loop.
*
* The last value needs to be done as a special case.
*/
int convolve_sse_simple(float* in, float* out, int length,
float* kernel, int kernel_length)
{
__m128 kernel_reverse[kernel_length] __attribute__ ((aligned (16)));
__m128 data_block __attribute__ ((aligned (16)));
__m128 prod __attribute__ ((aligned (16)));
__m128 acc __attribute__ ((aligned (16)));
// Reverse the kernel and repeat each value across a 4-vector
for(int i=0; i<kernel_length; i++){
kernel_reverse[i] = _mm_set1_ps(kernel[kernel_length - i - 1]);
}
for(int i=0; i<length-kernel_length; i+=4){
// Zero the accumulator
acc = _mm_setzero_ps();
/* After this loop, we have computed 4 output samples
* for the price of one.
* */
for(int k=0; k<kernel_length; k++){
// Load 4-float data block. These needs to be an unaliged
// load (_mm_loadu_ps) as we step one sample at a time.
data_block = _mm_loadu_ps(in + i + k);
prod = _mm_mul_ps(kernel_reverse[k], data_block);
// Accumulate the 4 parallel values
acc = _mm_add_ps(acc, prod);
}
_mm_storeu_ps(out+i, acc);
}
// Need to do the last value as a special case
int i = length - kernel_length;
out[i] = 0.0;
for(int k=0; k<kernel_length; k++){
out[i] += in[i+k] * kernel[kernel_length - k - 1];
}
return 0;
}
/* As convolve_sse_simple plus...
*
* We specify that the kernel must have a length which is a multiple
* of 4. This allows us to define a fixed inner-most loop that can be
* unrolled by the compiler
*/
int convolve_sse_partial_unroll(float* in, float* out, int length,
float* kernel, int kernel_length)
{
__m128 kernel_reverse[kernel_length] __attribute__ ((aligned (16)));
__m128 data_block __attribute__ ((aligned (16)));
__m128 prod __attribute__ ((aligned (16)));
__m128 acc __attribute__ ((aligned (16)));
// Reverse the kernel and repeat each value across a 4-vector
for(int i=0; i<kernel_length; i++){
kernel_reverse[i] = _mm_set1_ps(kernel[kernel_length - i - 1]);
}
for(int i=0; i<length-kernel_length; i+=4){
acc = _mm_setzero_ps();
for(int k=0; k<kernel_length; k+=4){
int data_offset = i + k;
for (int l = 0; l < 4; l++){
data_block = _mm_loadu_ps(in + data_offset + l);
prod = _mm_mul_ps(kernel_reverse[k+l], data_block);
acc = _mm_add_ps(acc, prod);
}
}
_mm_storeu_ps(out+i, acc);
}
// Need to do the last value as a special case
int i = length - kernel_length;
out[i] = 0.0;
for(int k=0; k<kernel_length; k++){
out[i] += in[i+k] * kernel[kernel_length - k - 1];
}
return 0;
}
/* As convolve_sse_partial_unroll plus...
*
* We repeat the input data 4 times, with each repeat being shifted
* by one sample from the previous repeat:
* original: [0, 1, 2, 3, 4, 5, ...]
*
* repeat 1: [0, 1, 2, 3, 4, 5, ...]
* repeat 2: [1, 2, 3, 4, 5, 6, ...]
* repeat 3: [2, 3, 4, 5, 6, 7, ...]
* repeat 4: [3, 4, 5, 6, 7, 8, ...]
*
* The effect of this is to create a set of arrays that encapsulate
* a 16-byte alignment for every possible offset within the data.
* Sample 0 is aligned in repeat 1, Sample 1 is aligned in repeat 1
* etc. We then wrap around and sample 4 is aligned on repeat 1.
*
* The copies can be done fast with a memcpy.
*
* This means that in our unrolled inner-most loop, we can now do
* an aligned data load (_mm_load_ps), speeding up the algorithm
* by ~2x.
* */
int convolve_sse_in_aligned(float* in, float* out, int length,
float* kernel, int kernel_length)
{
float in_aligned[4][length] __attribute__ ((aligned (16)));
__m128 kernel_reverse[kernel_length] __attribute__ ((aligned (16)));
__m128 data_block __attribute__ ((aligned (16)));
__m128 prod __attribute__ ((aligned (16)));
__m128 acc __attribute__ ((aligned (16)));
// Reverse the kernel and repeat each value across a 4-vector
for(int i=0; i<kernel_length; i++){
kernel_reverse[i] = _mm_set1_ps(kernel[kernel_length - i - 1]);
}
/* Create a set of 4 aligned arrays
* Each array is offset by one sample from the one before
*/
for(int i=0; i<4; i++){
memcpy(in_aligned[i], (in+i), (length-i)*sizeof(float));
}
for(int i=0; i<length-kernel_length; i+=4){
acc = _mm_setzero_ps();
for(int k=0; k<kernel_length; k+=4){
int data_offset = i + k;
for (int l = 0; l < 4; l++){
data_block = _mm_load_ps(in_aligned[l] + data_offset);
prod = _mm_mul_ps(kernel_reverse[k+l], data_block);
acc = _mm_add_ps(acc, prod);
}
}
_mm_storeu_ps(out+i, acc);
}
// Need to do the last value as a special case
int i = length - kernel_length;
out[i] = 0.0;
for(int k=0; k<kernel_length; k++){
out[i] += in_aligned[0][i+k] * kernel[kernel_length - k - 1];
}
return 0;
}
/* In this case, the kernel is assumed to be a fixed length, this
* allows the compiler to do another level of loop unrolling.
*/
int convolve_sse_in_aligned_fixed_kernel(float* in, float* out, int length,
float* kernel, int kernel_length)
{
float in_aligned[4][length] __attribute__ ((aligned (16)));
__m128 kernel_reverse[KERNEL_LENGTH] __attribute__ ((aligned (16)));
__m128 data_block __attribute__ ((aligned (16)));
__m128 prod __attribute__ ((aligned (16)));
__m128 acc __attribute__ ((aligned (16)));
// Reverse the kernel and repeat each value across a 4-vector
for(int i=0; i<kernel_length; i++){
kernel_reverse[i] = _mm_set1_ps(kernel[kernel_length - i - 1]);
}
/* Create a set of 4 aligned arrays
* Each array is offset by one sample from the one before
*/
for(int i=0; i<4; i++){
memcpy(in_aligned[i], (in+i), (length-i)*sizeof(float));
}
for(int i=0; i<length-KERNEL_LENGTH; i+=4){
acc = _mm_setzero_ps();
for(int k=0; k<KERNEL_LENGTH; k+=4){
int data_offset = i + k;
for (int l = 0; l < 4; l++){
data_block = _mm_load_ps(in_aligned[l] + data_offset);
prod = _mm_mul_ps(kernel_reverse[k+l], data_block);
acc = _mm_add_ps(acc, prod);
}
}
_mm_storeu_ps(out+i, acc);
}
// Need to do the last value as a special case
int i = length - KERNEL_LENGTH;
out[i] = 0.0;
for(int k=0; k<KERNEL_LENGTH; k++){
out[i] += in_aligned[0][i+k] * kernel[KERNEL_LENGTH - k - 1];
}
return 0;
}
/* As convolve_sse_in_aligned_fixed_kernel but with AVX instructions
* emulated with SSE.
* */
#define KERNEL_LENGTH 16
#define ALIGNMENT 32
int convolve_sse_unrolled_avx_vector(float* in, float* out, int length,
float* kernel, int kernel_length)
{
float in_aligned[SSE_SIMD_LENGTH][length] __attribute__ (
(aligned (ALIGNMENT)));
__m128 kernel_reverse[KERNEL_LENGTH] __attribute__ (
(aligned (ALIGNMENT)));
__m128 data_block __attribute__ ((aligned (ALIGNMENT)));
__m128 prod __attribute__ ((aligned (ALIGNMENT)));
__m128 acc0 __attribute__ ((aligned (ALIGNMENT)));
__m128 acc1 __attribute__ ((aligned (ALIGNMENT)));
// Reverse the kernel and repeat each value across a 4-vector
for(int i=0; i<KERNEL_LENGTH; i++){
kernel_reverse[i] = _mm_set1_ps(kernel[KERNEL_LENGTH - i - 1]);
}
/* Create a set of FLOATS_PER_SIMD_LENGTH aligned arrays
* Each array is offset by one sample from the one before
*/
for(int i=0; i<4; i++){
memcpy(in_aligned[i], (in+i), (length-i)*sizeof(float));
}
for(int i=0; i<length-KERNEL_LENGTH; i+=AVX_SIMD_LENGTH){
acc0 = _mm_setzero_ps();
acc1 = _mm_setzero_ps();
for(int k=0; k<KERNEL_LENGTH; k+=AVX_SIMD_LENGTH){
int data_offset = i + k;
for (int l = 0; l < 4; l++){
data_block = _mm_load_ps(in_aligned[l] + data_offset);
prod = _mm_mul_ps(kernel_reverse[k+l], data_block);
acc0 = _mm_add_ps(acc0, prod);
data_block = _mm_load_ps(in_aligned[l] + data_offset + 4);
prod = _mm_mul_ps(kernel_reverse[k+l], data_block);
acc1 = _mm_add_ps(acc1, prod);
data_block = _mm_load_ps(in_aligned[l] + data_offset + 4);
prod = _mm_mul_ps(kernel_reverse[k+l+4], data_block);
acc0 = _mm_add_ps(acc0, prod);
data_block = _mm_load_ps(in_aligned[l] + data_offset + 8);
prod = _mm_mul_ps(kernel_reverse[k+l+4], data_block);
acc1 = _mm_add_ps(acc1, prod);
}
}
_mm_storeu_ps(out+i, acc0);
_mm_storeu_ps(out+i+4, acc1);
}
// Need to do the last value as a special case
int i = length - KERNEL_LENGTH;
out[i] = 0.0;
for(int k=0; k<KERNEL_LENGTH; k++){
out[i] += in_aligned[0][i+k] * kernel[KERNEL_LENGTH - k - 1];
}
return 0;
}
#define VECTOR_LENGTH 16
int convolve_sse_unrolled_vector(float* in, float* out,
int length, float* kernel, int kernel_length)
{
float in_aligned[SSE_SIMD_LENGTH][length] __attribute__ (
(aligned (ALIGNMENT)));
__m128 kernel_reverse[KERNEL_LENGTH] __attribute__ (
(aligned (ALIGNMENT)));
__m128 data_block __attribute__ ((aligned (ALIGNMENT)));
__m128 prod __attribute__ ((aligned (ALIGNMENT)));
__m128 acc0 __attribute__ ((aligned (ALIGNMENT)));
__m128 acc1 __attribute__ ((aligned (ALIGNMENT)));
__m128 acc2 __attribute__ ((aligned (ALIGNMENT)));
__m128 acc3 __attribute__ ((aligned (ALIGNMENT)));
// Reverse the kernel and repeat each value across a 4-vector
for(int i=0; i<KERNEL_LENGTH; i++){
kernel_reverse[i] = _mm_set1_ps(kernel[KERNEL_LENGTH - i - 1]);
}
/* Create a set of 4 aligned arrays
* Each array is offset by one sample from the one before
*/
for(int i=0; i < SSE_SIMD_LENGTH; i++){
memcpy(in_aligned[i], (in+i), (length-i)*sizeof(float));
}
for(int i=0; i<length-KERNEL_LENGTH; i+=VECTOR_LENGTH){
acc0 = _mm_setzero_ps();
acc1 = _mm_setzero_ps();
acc2 = _mm_setzero_ps();
acc3 = _mm_setzero_ps();
for(int k=0; k<KERNEL_LENGTH; k+=VECTOR_LENGTH){
int data_offset = i + k;
for (int l = 0; l < SSE_SIMD_LENGTH; l++){
for (int m = 0; m < VECTOR_LENGTH; m+=SSE_SIMD_LENGTH) {
data_block = _mm_load_ps(
in_aligned[l] + data_offset + m);
prod = _mm_mul_ps(kernel_reverse[k+l+m], data_block);
acc0 = _mm_add_ps(acc0, prod);
data_block = _mm_load_ps(in_aligned[l] + data_offset
+ m + SSE_SIMD_LENGTH);
prod = _mm_mul_ps(kernel_reverse[k+l+m], data_block);
acc1 = _mm_add_ps(acc1, prod);
data_block = _mm_load_ps(in_aligned[l] + data_offset
+ m + SSE_SIMD_LENGTH * 2);
prod = _mm_mul_ps(kernel_reverse[k+l+m], data_block);
acc2 = _mm_add_ps(acc2, prod);
data_block = _mm_load_ps(in_aligned[l] + data_offset
+ m + SSE_SIMD_LENGTH * 3);
prod = _mm_mul_ps(kernel_reverse[k+l+m], data_block);
acc3 = _mm_add_ps(acc3, prod);
}
}
}
_mm_storeu_ps(out+i, acc0);
_mm_storeu_ps(out+i+SSE_SIMD_LENGTH, acc1);
_mm_storeu_ps(out+i+SSE_SIMD_LENGTH*2, acc2);
_mm_storeu_ps(out+i+SSE_SIMD_LENGTH*3, acc3);
}
// Need to do the last value as a special case
int i = length - KERNEL_LENGTH;
out[i] = 0.0;
for(int k=0; k<KERNEL_LENGTH; k++){
out[i] += in_aligned[0][i+k] * kernel[KERNEL_LENGTH - k - 1];
}
return 0;
}
#endif
#ifdef AVX
#define VECTOR_LENGTH 16
#define ALIGNMENT 32
int convolve_avx_unrolled_vector(float* in, float* out,
int length, float* kernel, int kernel_length)
{
float in_aligned[AVX_SIMD_LENGTH][length] __attribute__ (
(aligned (ALIGNMENT)));
__m256 kernel_reverse[KERNEL_LENGTH] __attribute__ (
(aligned (ALIGNMENT)));
__m256 data_block __attribute__ ((aligned (ALIGNMENT)));
__m256 prod __attribute__ ((aligned (ALIGNMENT)));
__m256 acc0 __attribute__ ((aligned (ALIGNMENT)));
__m256 acc1 __attribute__ ((aligned (ALIGNMENT)));
// Repeat the kernel across the vector
for(int i=0; i<KERNEL_LENGTH; i++){
kernel_reverse[i] = _mm256_broadcast_ss(
&kernel[KERNEL_LENGTH - i - 1]);
}
/* Create a set of 4 aligned arrays
* Each array is offset by one sample from the one before
*/
for(int i=0; i < SSE_SIMD_LENGTH; i++){
memcpy(in_aligned[i], (in+i), (length-i)*sizeof(float));
}
for(int i=0; i<length-KERNEL_LENGTH; i+=VECTOR_LENGTH){
acc0 = _mm256_setzero_ps();
acc1 = _mm256_setzero_ps();
for(int k=0; k<KERNEL_LENGTH; k+=VECTOR_LENGTH){
int data_offset = i + k;
for (int l = 0; l < SSE_SIMD_LENGTH; l++){
for (int m = 0; m < VECTOR_LENGTH; m+=SSE_SIMD_LENGTH) {
data_block = _mm256_loadu_ps(
in_aligned[l] + data_offset + m);
prod = _mm256_mul_ps(kernel_reverse[k+l+m], data_block);
acc0 = _mm256_add_ps(acc0, prod);
data_block = _mm256_loadu_ps(in_aligned[l] + data_offset
+ m + AVX_SIMD_LENGTH);
prod = _mm256_mul_ps(kernel_reverse[k+l+m], data_block);
acc1 = _mm256_add_ps(acc1, prod);
}
}
}
_mm256_storeu_ps(out+i, acc0);
_mm256_storeu_ps(out+i+AVX_SIMD_LENGTH, acc1);
}
// Need to do the last value as a special case
int i = length - KERNEL_LENGTH;
out[i] = 0.0;
for(int k=0; k<KERNEL_LENGTH; k++){
out[i] += in_aligned[0][i+k] * kernel[KERNEL_LENGTH - k - 1];
}
return 0;
}
/* Like convolve_avx_unrolled_vector but without creating the
* half alignment arrays.
* */
int convolve_avx_unrolled_vector_unaligned(float* in, float* out,
int length, float* kernel, int kernel_length)
{
__m256 kernel_reverse[KERNEL_LENGTH] __attribute__ (
(aligned (ALIGNMENT)));
__m256 data_block __attribute__ ((aligned (ALIGNMENT)));
__m256 prod __attribute__ ((aligned (ALIGNMENT)));
__m256 acc0 __attribute__ ((aligned (ALIGNMENT)));
__m256 acc1 __attribute__ ((aligned (ALIGNMENT)));
// Repeat the kernel across the vector
for(int i=0; i<KERNEL_LENGTH; i++){
kernel_reverse[i] = _mm256_broadcast_ss(
&kernel[KERNEL_LENGTH - i - 1]);
}
for(int i=0; i<length-KERNEL_LENGTH; i+=VECTOR_LENGTH){
acc0 = _mm256_setzero_ps();
acc1 = _mm256_setzero_ps();
for(int k=0; k<KERNEL_LENGTH; k+=VECTOR_LENGTH){
int data_offset = i + k;
for (int l = 0; l < SSE_SIMD_LENGTH; l++){
for (int m = 0; m < VECTOR_LENGTH; m+=SSE_SIMD_LENGTH) {
data_block = _mm256_loadu_ps(
in + l + data_offset + m);
prod = _mm256_mul_ps(kernel_reverse[k+l+m], data_block);
acc0 = _mm256_add_ps(acc0, prod);
data_block = _mm256_loadu_ps(in + l + data_offset
+ m + AVX_SIMD_LENGTH);
prod = _mm256_mul_ps(kernel_reverse[k+l+m], data_block);
acc1 = _mm256_add_ps(acc1, prod);
}
}
}
_mm256_storeu_ps(out+i, acc0);
_mm256_storeu_ps(out+i+AVX_SIMD_LENGTH, acc1);
}
// Need to do the last value as a special case
int i = length - KERNEL_LENGTH;
out[i] = 0.0;
for(int k=0; k<KERNEL_LENGTH; k++){
out[i] += in[i+k] * kernel[KERNEL_LENGTH - k - 1];
}
return 0;
}
/* Like convolve_avx_unrolled_vector_unaligned but using FMA
* */
int convolve_avx_unrolled_vector_unaligned_fma(float* in, float* out,
int length, float* kernel, int kernel_length)
{
__m256 kernel_reverse[KERNEL_LENGTH] __attribute__ (
(aligned (ALIGNMENT)));
__m256 data_block __attribute__ ((aligned (ALIGNMENT)));
__m256 acc0 __attribute__ ((aligned (ALIGNMENT)));
__m256 acc1 __attribute__ ((aligned (ALIGNMENT)));
// Repeat the kernel across the vector
for(int i=0; i<KERNEL_LENGTH; i++){
kernel_reverse[i] = _mm256_broadcast_ss(
&kernel[KERNEL_LENGTH - i - 1]);
}
for(int i=0; i<length-KERNEL_LENGTH; i+=VECTOR_LENGTH){
acc0 = _mm256_setzero_ps();
acc1 = _mm256_setzero_ps();
for(int k=0; k<KERNEL_LENGTH; k+=VECTOR_LENGTH){
int data_offset = i + k;
for (int l = 0; l < SSE_SIMD_LENGTH; l++){
for (int m = 0; m < VECTOR_LENGTH; m+=SSE_SIMD_LENGTH) {
data_block = _mm256_loadu_ps(
in + l + data_offset + m);
//acc0 = kernel_reverse[k+l+m] * data_block + acc0;
acc0 = _mm256_fmadd_ps(
kernel_reverse[k+l+m], data_block, acc0);
data_block = _mm256_loadu_ps(in + l + data_offset
+ m + AVX_SIMD_LENGTH);
//acc1 = kernel_reverse[k+l+m] * data_block + acc1;
acc1 = _mm256_fmadd_ps(
kernel_reverse[k+l+m], data_block, acc1);
}
}
}
_mm256_storeu_ps(out+i, acc0);
_mm256_storeu_ps(out+i+AVX_SIMD_LENGTH, acc1);
}
// Need to do the last value as a special case
int i = length - KERNEL_LENGTH;
out[i] = 0.0;
for(int k=0; k<KERNEL_LENGTH; k++){
out[i] += in[i+k] * kernel[KERNEL_LENGTH - k - 1];
}
return 0;
}
/* Like avx_unrolled_vector but with the data loaded using aligned SSE load
* instructions
*/
int convolve_avx_unrolled_vector_m128_load(float* in, float* out,
int length, float* kernel, int kernel_length)
{
float in_aligned[AVX_SIMD_LENGTH][length] __attribute__ (
(aligned (ALIGNMENT)));
__m256 kernel_reverse[KERNEL_LENGTH] __attribute__ (
(aligned (ALIGNMENT)));
__m256 data_block __attribute__ ((aligned (ALIGNMENT)));
__m128 upper_data_block __attribute__ ((aligned (ALIGNMENT)));
__m128 lower_data_block __attribute__ ((aligned (ALIGNMENT)));
__m256 prod __attribute__ ((aligned (ALIGNMENT)));
__m256 acc0 __attribute__ ((aligned (ALIGNMENT)));
__m256 acc1 __attribute__ ((aligned (ALIGNMENT)));
// Repeat the kernel across the vector
for(int i=0; i<KERNEL_LENGTH; i++){
kernel_reverse[i] = _mm256_broadcast_ss(
&kernel[KERNEL_LENGTH - i - 1]);
}
/* Create a set of 4 aligned arrays
* Each array is offset by one sample from the one before
*/
for(int i=0; i < SSE_SIMD_LENGTH; i++){
memcpy(in_aligned[i], (in+i), (length-i)*sizeof(float));
}
for(int i=0; i<length-KERNEL_LENGTH; i+=VECTOR_LENGTH){
acc0 = _mm256_setzero_ps();
acc1 = _mm256_setzero_ps();
for(int k=0; k<KERNEL_LENGTH; k+=VECTOR_LENGTH){
int data_offset = i + k;
for (int l = 0; l < SSE_SIMD_LENGTH; l++){
for (int m = 0; m < VECTOR_LENGTH; m+=SSE_SIMD_LENGTH) {
lower_data_block = _mm_load_ps(
in_aligned[l] + data_offset + m);
upper_data_block = _mm_load_ps(
in_aligned[l] + data_offset + m + SSE_SIMD_LENGTH);
data_block = _mm256_castps128_ps256(lower_data_block);
data_block = _mm256_insertf128_ps(
data_block, upper_data_block, 1);
prod = _mm256_mul_ps(kernel_reverse[k+l+m], data_block);
acc0 = _mm256_add_ps(acc0, prod);
lower_data_block = _mm_load_ps(
in_aligned[l] + data_offset + m +
AVX_SIMD_LENGTH);
upper_data_block = _mm_load_ps(
in_aligned[l] + data_offset + m +
AVX_SIMD_LENGTH + SSE_SIMD_LENGTH);
data_block = _mm256_castps128_ps256(lower_data_block);
data_block = _mm256_insertf128_ps(
data_block, upper_data_block, 1);
prod = _mm256_mul_ps(kernel_reverse[k+l+m], data_block);
acc1 = _mm256_add_ps(acc1, prod);
}
}
}
_mm256_storeu_ps(out+i, acc0);
_mm256_storeu_ps(out+i+AVX_SIMD_LENGTH, acc1);
}
// Need to do the last value as a special case
int i = length - KERNEL_LENGTH;
out[i] = 0.0;
for(int k=0; k<KERNEL_LENGTH; k++){
out[i] += in_aligned[0][i+k] * kernel[KERNEL_LENGTH - k - 1];
}
return 0;
}
int convolve_avx_unrolled_vector_aligned(float* in, float* out,
int length, float* kernel, int kernel_length)
{
float in_aligned[AVX_SIMD_LENGTH][length] __attribute__ (
(aligned (ALIGNMENT)));
__m256 kernel_reverse[KERNEL_LENGTH] __attribute__ (
(aligned (ALIGNMENT)));
__m256 data_block __attribute__ ((aligned (ALIGNMENT)));
__m256 prod __attribute__ ((aligned (ALIGNMENT)));
__m256 acc0 __attribute__ ((aligned (ALIGNMENT)));
__m256 acc1 __attribute__ ((aligned (ALIGNMENT)));
// Repeat the kernel across the vector
for(int i=0; i<KERNEL_LENGTH; i++){
kernel_reverse[i] = _mm256_broadcast_ss(
&kernel[KERNEL_LENGTH - i - 1]);
}
/* Create a set of 8 aligned arrays
* Each array is offset by one sample from the one before
*/
for(int i=0; i < AVX_SIMD_LENGTH; i++){
memcpy(in_aligned[i], (in+i), (length-i)*sizeof(float));
}
for(int i=0; i<length-KERNEL_LENGTH; i+=VECTOR_LENGTH){
acc0 = _mm256_setzero_ps();
acc1 = _mm256_setzero_ps();
for(int k=0; k<KERNEL_LENGTH; k+=VECTOR_LENGTH){
int data_offset = i + k;
for (int l = 0; l < AVX_SIMD_LENGTH; l++){
for (int m = 0; m < VECTOR_LENGTH; m+=AVX_SIMD_LENGTH) {
data_block = _mm256_load_ps(
in_aligned[l] + data_offset + m);
prod = _mm256_mul_ps(kernel_reverse[k+l+m], data_block);
acc0 = _mm256_add_ps(acc0, prod);
data_block = _mm256_load_ps(in_aligned[l] + data_offset
+ m + AVX_SIMD_LENGTH);
prod = _mm256_mul_ps(kernel_reverse[k+l+m], data_block);
acc1 = _mm256_add_ps(acc1, prod);
}
}
}
_mm256_storeu_ps(out+i, acc0);
_mm256_storeu_ps(out+i+AVX_SIMD_LENGTH, acc1);
}
// Need to do the last value as a special case
int i = length - KERNEL_LENGTH;
out[i] = 0.0;
for(int k=0; k<KERNEL_LENGTH; k++){
out[i] += in_aligned[0][i+k] * kernel[KERNEL_LENGTH - k - 1];
}
return 0;
}
int convolve_avx_unrolled_vector_partial_aligned(float* in, float* out,
int length, float* kernel, int kernel_length)
{
float kernel_block[AVX_SIMD_LENGTH] __attribute__ (
(aligned (ALIGNMENT)));
float in_aligned[AVX_SIMD_LENGTH][length] __attribute__ (
(aligned (ALIGNMENT)));
__m256 kernel_reverse[KERNEL_LENGTH] __attribute__ (
(aligned (ALIGNMENT)));
__m256 data_block __attribute__ ((aligned (ALIGNMENT)));
__m256 prod __attribute__ ((aligned (ALIGNMENT)));
__m256 acc0 __attribute__ ((aligned (ALIGNMENT)));
__m256 acc1 __attribute__ ((aligned (ALIGNMENT)));
// Repeat the kernel across the vector
for(int i=0; i<KERNEL_LENGTH; i++){
for(int j=0; j<AVX_SIMD_LENGTH; j++){
kernel_block[j] = kernel[KERNEL_LENGTH - i - 1];
}
kernel_reverse[i] = _mm256_load_ps(kernel_block);
}
/* Create a set of SSE_SIMD_LENGTH aligned arrays
* Each array is offset by one sample from the one before
*/
for(int i=0; i < SSE_SIMD_LENGTH; i++){
memcpy(in_aligned[i], (in+i), (length-i)*sizeof(float));
}
for(int i=0; i<length-KERNEL_LENGTH; i+=VECTOR_LENGTH){
acc0 = _mm256_setzero_ps();
acc1 = _mm256_setzero_ps();
for(int k=0; k<KERNEL_LENGTH; k+=VECTOR_LENGTH){
int data_offset = i + k;
for (int l = 0; l < SSE_SIMD_LENGTH; l++){
for (int m = 0; m < VECTOR_LENGTH; m+=AVX_SIMD_LENGTH) {
data_block = _mm256_load_ps(
in_aligned[l] + data_offset + m);
prod = _mm256_mul_ps(kernel_reverse[k+l+m], data_block);
acc0 = _mm256_add_ps(acc0, prod);
data_block = _mm256_load_ps(in_aligned[l] + data_offset
+ m + AVX_SIMD_LENGTH);
prod = _mm256_mul_ps(kernel_reverse[k+l+m], data_block);
acc1 = _mm256_add_ps(acc1, prod);
data_block = _mm256_loadu_ps(
in_aligned[l] + data_offset + m + SSE_SIMD_LENGTH);
prod = _mm256_mul_ps(
kernel_reverse[k+l+m+SSE_SIMD_LENGTH], data_block);
acc0 = _mm256_add_ps(acc0, prod);
data_block = _mm256_loadu_ps(in_aligned[l] + data_offset
+ m + SSE_SIMD_LENGTH + AVX_SIMD_LENGTH);
prod = _mm256_mul_ps(
kernel_reverse[k+l+m+SSE_SIMD_LENGTH], data_block);
acc1 = _mm256_add_ps(acc1, prod);
}
}
}
_mm256_storeu_ps(out+i, acc0);
_mm256_storeu_ps(out+i+AVX_SIMD_LENGTH, acc1);
}
// Need to do the last value as a special case
int i = length - KERNEL_LENGTH;
out[i] = 0.0;
for(int k=0; k<KERNEL_LENGTH; k++){
out[i] += in_aligned[0][i+k] * kernel[KERNEL_LENGTH - k - 1];
}
return 0;
}
/* The following is exactly the same as convolve_avx_unrolled_vector
* but the output is written to a local variable before copying with
* a memcpy at the end.
* */
int convolve_avx_unrolled_vector_local_output(float* in, float* out,
int length, float* kernel, int kernel_length)
{
float in_aligned[AVX_SIMD_LENGTH][length] __attribute__ (
(aligned (ALIGNMENT)));
float local_out[length-KERNEL_LENGTH + 1] __attribute__ (
(aligned (ALIGNMENT)));
__m256 kernel_reverse[KERNEL_LENGTH] __attribute__ (
(aligned (ALIGNMENT)));
__m256 data_block __attribute__ ((aligned (ALIGNMENT)));
__m256 prod __attribute__ ((aligned (ALIGNMENT)));
__m256 acc0 __attribute__ ((aligned (ALIGNMENT)));
__m256 acc1 __attribute__ ((aligned (ALIGNMENT)));
// Repeat the kernel across the vector
for(int i=0; i<KERNEL_LENGTH; i++){
kernel_reverse[i] = _mm256_broadcast_ss(
&kernel[KERNEL_LENGTH - i - 1]);
}
/* Create a set of 4 aligned arrays
* Each array is offset by one sample from the one before
*/
for(int i=0; i < SSE_SIMD_LENGTH; i++){
memcpy(in_aligned[i], (in+i), (length-i)*sizeof(float));
}
for(int i=0; i<length-KERNEL_LENGTH; i+=VECTOR_LENGTH){
acc0 = _mm256_setzero_ps();
acc1 = _mm256_setzero_ps();
for(int k=0; k<KERNEL_LENGTH; k+=VECTOR_LENGTH){
int data_offset = i + k;
for (int l = 0; l < SSE_SIMD_LENGTH; l++){
for (int m = 0; m < VECTOR_LENGTH; m+=SSE_SIMD_LENGTH) {
data_block = _mm256_loadu_ps(
in_aligned[l] + data_offset + m);