forked from bnsreenu/python_for_microscopists
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy path120_img_registration_methods_in_python.py
165 lines (122 loc) · 5.06 KB
/
120_img_registration_methods_in_python.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
#!/usr/bin/env python
__author__ = "Sreenivas Bhattiprolu"
__license__ = "Feel free to copy, I appreciate if you acknowledge Python for Microscopists"
# https://youtu.be/TyV-9K_8w20
"""
Learning from the astronomy guys...
A couple of ways to perform image registration
https://image-registration.readthedocs.io/en/latest/image_registration.html
"""
from skimage import io
from image_registration import chi2_shift
image = io.imread("images/BSE.jpg")
offset_image = io.imread("images/BSE_transl.jpg")
# offset image translated by (-17.45, 18.75) in y and x
#Method 1: chi squared shift
#Find the offsets between image 1 and image 2 using the DFT upsampling method
noise=0.1
xoff, yoff, exoff, eyoff = chi2_shift(image, offset_image, noise,
return_error=True, upsample_factor='auto')
print("Offset image was translated by: 18.75, -17.45")
print("Pixels shifted by: ", xoff, yoff)
from scipy.ndimage import shift
corrected_image = shift(offset_image, shift=(xoff,yoff), mode='constant')
from matplotlib import pyplot as plt
fig = plt.figure(figsize=(10, 10))
ax1 = fig.add_subplot(2,2,1)
ax1.imshow(image, cmap='gray')
ax1.title.set_text('Input Image')
ax2 = fig.add_subplot(2,2,2)
ax2.imshow(offset_image, cmap='gray')
ax2.title.set_text('Offset image')
ax3 = fig.add_subplot(2,2,3)
ax3.imshow(corrected_image, cmap='gray')
ax3.title.set_text('Corrected')
plt.show()
###########################################################################
#Method 2: Cross correlation based shift
#Use cross-correlation and a 2nd order taylor expansion to measure the shift
from skimage import io
from image_registration import cross_correlation_shifts
image = io.imread("images/BSE.jpg")
offset_image = io.imread("images/BSE_transl.jpg")
# offset image translated by (-17.45, 18.75) in y and x
xoff, yoff = cross_correlation_shifts(image, offset_image)
print("Offset image was translated by: 18.75, -17.45")
print("Pixels shifted by: ", xoff, yoff)
from scipy.ndimage import shift
corrected_image = shift(offset_image, shift=(xoff,yoff), mode='constant')
from matplotlib import pyplot as plt
fig = plt.figure(figsize=(10, 10))
ax1 = fig.add_subplot(2,2,1)
ax1.imshow(image, cmap='gray')
ax1.title.set_text('Input Image')
ax2 = fig.add_subplot(2,2,2)
ax2.imshow(offset_image, cmap='gray')
ax2.title.set_text('Offset image')
ax3 = fig.add_subplot(2,2,3)
ax3.imshow(corrected_image, cmap='gray')
ax3.title.set_text('Corrected')
plt.show()
############################################################
#Method 3: Optical flow based shift
#takes two images and returns a vector field.
#For every pixel in image 1 you get a vector showing where it moved to in image 2.
from skimage import io
from image_registration import cross_correlation_shifts
image = io.imread("images/BSE.jpg")
offset_image = io.imread("images/BSE_transl.jpg")
# offset image translated by (-17.45, 18.75) in y and x
from skimage import registration
flow = registration.optical_flow_tvl1(image, offset_image)
# display dense optical flow
flow_x = flow[1, :, :]
flow_y = flow[0, :, :]
#Let us find the mean of all pixels in x and y and shift image by that amount
#ideally, you need to move each pixel by the amount from flow
import numpy as np
xoff = np.mean(flow_x)
yoff = np.mean(flow_y)
print("Offset image was translated by: 18.75, -17.45")
print("Pixels shifted by: ", xoff, yoff)
from scipy.ndimage import shift
corrected_image = shift(offset_image, shift=(xoff,yoff), mode='constant')
from matplotlib import pyplot as plt
fig = plt.figure(figsize=(10, 10))
ax1 = fig.add_subplot(2,2,1)
ax1.imshow(image, cmap='gray')
ax1.title.set_text('Input Image')
ax2 = fig.add_subplot(2,2,2)
ax2.imshow(offset_image, cmap='gray')
ax2.title.set_text('Offset image')
ax3 = fig.add_subplot(2,2,3)
ax3.imshow(corrected_image, cmap='gray')
ax3.title.set_text('Corrected')
plt.show()
##################################################
#Method 4: register_translation from skimage.feature (already covered in previous video)
from skimage import io
from image_registration import cross_correlation_shifts
image = io.imread("images/BSE.jpg")
offset_image = io.imread("images/BSE_transl.jpg")
# offset image translated by (-17.45, 18.75) in y and x
from skimage.feature import register_translation
shifted, error, diffphase = register_translation(image, offset_image, 100)
xoff = -shifted[1]
yoff = -shifted[0]
print("Offset image was translated by: 18.75, -17.45")
print("Pixels shifted by: ", xoff, yoff)
from scipy.ndimage import shift
corrected_image = shift(offset_image, shift=(xoff,yoff), mode='constant')
from matplotlib import pyplot as plt
fig = plt.figure(figsize=(10, 10))
ax1 = fig.add_subplot(2,2,1)
ax1.imshow(image, cmap='gray')
ax1.title.set_text('Input Image')
ax2 = fig.add_subplot(2,2,2)
ax2.imshow(offset_image, cmap='gray')
ax2.title.set_text('Offset image')
ax3 = fig.add_subplot(2,2,3)
ax3.imshow(corrected_image, cmap='gray')
ax3.title.set_text('Corrected')
plt.show()