forked from bnsreenu/python_for_microscopists
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy path105_what_is_fourier_transform.py
40 lines (30 loc) · 1.4 KB
/
105_what_is_fourier_transform.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
#!/usr/bin/env python
__author__ = "Sreenivas Bhattiprolu"
__license__ = "Feel free to copy, I appreciate if you acknowledge Python for Microscopists"
# https://youtu.be/lzR86lz1Sg8
import cv2
from matplotlib import pyplot as plt
import numpy as np
#Generate a 2D sine wave image
x = np.arange(256) # generate 1-D sine wave
y = np.sin(2 * np.pi * x / 30) #Control the frequency
y += max(y) # offset sine wave by the max value to go out of negative range of sine
img = np.array([[y[j]*127 for j in range(256)] for i in range(256)], dtype=np.uint8) # create 2-D array of sine-wave
#img = np.rot90(frame) #Rotate img by 90 degrees
#img = cv2.imread('images/2d_sine.png', 0) # load an image
dft = cv2.dft(np.float32(img), flags=cv2.DFT_COMPLEX_OUTPUT)
#Shift DFT. First check the output without the shift
dft_shift = np.fft.fftshift(dft)
#Calculate magnitude spectrum from the DFT
#Added 1 as we may see 0 values and log of 0 is indeterminate
magnitude_spectrum = 20 * np.log((cv2.magnitude(dft_shift[:, :, 0], dft_shift[:, :, 1]))+1)
#As the spatial frequency increases (bars closer),
#the peaks in the DFT amplitude spectrum move farther away from the origin
fig = plt.figure(figsize=(12, 12))
ax1 = fig.add_subplot(2,2,1)
ax1.imshow(img)
ax1.title.set_text('Input Image')
ax2 = fig.add_subplot(2,2,2)
ax2.imshow(magnitude_spectrum)
ax2.title.set_text('FFT of image')
plt.show()