forked from bnsreenu/python_for_image_processing_APEER
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtutorial34_denoising_using_bilateral.py
43 lines (27 loc) · 1.58 KB
/
tutorial34_denoising_using_bilateral.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
#Video Playlist: https://www.youtube.com/playlist?list=PLHae9ggVvqPgyRQQOtENr6hK0m1UquGaG
"""
Spyder Editor
cv2.cv2.bilateralFilter - https://opencv-python-tutroals.readthedocs.io/en/latest/py_tutorials/py_imgproc/py_filtering/py_filtering.html
skimage bilateral - https://scikit-image.org/docs/dev/auto_examples/filters/plot_denoise.html
https://people.csail.mit.edu/sparis/bf_course/course_notes.pdf
Bilateral is slow and not very efficient at salt and pepper
"""
import cv2
img_gaussian_noise = cv2.imread('images/Osteosarcoma_01_25Sigma_noise.tif', 0)
img_salt_pepper_noise = cv2.imread('images/Osteosarcoma_01_8bit_salt_pepper.tif', 0)
img = img_gaussian_noise
bilateral_using_cv2 = cv2.bilateralFilter(img, 5, 20, 100, borderType=cv2.BORDER_CONSTANT)
#d - diameter of each pixel neighborhood used during filtering
# sigmaCOlor - Sigma of grey/color space.
#sigmaSpace - Large value means farther pixels influence each other (as long as the colors are close enough)
from skimage.restoration import denoise_bilateral
bilateral_using_skimage = denoise_bilateral(img, sigma_color=0.05, sigma_spatial=15,
multichannel=False)
#sigma_color = float - Sigma for grey or color value.
#For large sigma_color values the filter becomes closer to gaussian blur.
#sigma_spatial: float. Standard ev. for range distance. Increasing this smooths larger features.
cv2.imshow("Original", img)
cv2.imshow("cv2 bilateral", bilateral_using_cv2)
cv2.imshow("Using skimage bilateral", bilateral_using_skimage)
cv2.waitKey(0)
cv2.destroyAllWindows()