forked from bnsreenu/python_for_image_processing_APEER
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtutorial15_numpy_arrays.py
73 lines (49 loc) · 2.08 KB
/
tutorial15_numpy_arrays.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
#Video Playlist: https://www.youtube.com/playlist?list=PLHae9ggVvqPgyRQQOtENr6hK0m1UquGaG
"""
numpy array is like a list but better suited for scientific computing.
An array is a grid of values, all of the same type.
The shape of an array is a tuple of integers reflecting the size of array
along each dimension.
"""
#To understand why we need numpy array let us look at the limitation of lists
a = [1,2,3,4,5]
b=2*a
print(b) #Repeats the array twice and does not multiply each element by 2
import numpy as np
c=np.array(a)
d=2*c
print(d) #This type of math is required for image processing.
#Also try other math... like c**2
print(c**2)
#Add 2 arrays
import numpy as np
a = np.array([1,2,3,4,5])
b= np.array([6,7,8])
c = np.array([9, 10, 11, 12, 13])
print(a+b) #Not possible as the dimensions are different for both arrays
print(a+c) #Possible
#Creating numpy arrays
x = np.array([[1,2],[3,4]]) #Integer values
y = np.array([[1,2],[3,4]], dtype=np.float64) #Integer values
#When you import images using most libraries it automatically imports them as numpy arrays
from skimage import io
img1 = io.imread('images/Osteosarcoma_01.tif')
print(type(img1))
#You can also generate arrays using built-in functions
a=np.ones((3,3)) #3x3 array with 1s
#Similarly you can fill zeros np.zeros((3x3))
#If we already have an array we can create another array of same shape
#and fill all with ones or zeros
b=np.ones_like(img1)
c = np.random.random((3,3)) #Fill with Random values between 0 and 1
#Slicing - subset of numpy arrays
a=np.array([[1,2,3,4], [5,6,7,8],[9,10,11,12]])
print(np.shape(a)) #3x4 array. 1st value in tuple is row and the second column
b=a[:2] #First 2 rows. Single value provided so by default rows.
c=a[:, :2] #First colon says pick all rows, second says first 2 columns
d = a[:2, 1:3] #First 2 rows, columns 1 and 2 (3 not included)
#Adding values in rows and columns
column_sum = np.sum(a, axis=0)
row_sum = np.sum(a, axis=1)
max_value = np.max(a)
transposed = a.T #Transposes the arrays (rows to columns)