-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathring_2p_ana.jl
89 lines (71 loc) · 2.1 KB
/
ring_2p_ana.jl
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
using QuadGK
using NumericalIntegration
using Plots
using Statistics
pyplot()
function a_fac(α, ϵ, p, r_c)
return α * ϵ * p * r_c
end
function b(β, r_c)
return sqrt(2) * β * r_c / (4pi)
end
function c(γ, r_c)
return γ * r_c / (2pi)
end
function Δu(α, β, γ, ϵ, p, r_c, ϕ::LinRange, p_share::Array, ϕ_i)
f1 = a_fac(α, ϵ, p, r_c)
f2 = b(β, r_c) * integrate(ϕ, p_share .* sqrt.(1 .- cos.(ϕ .- ϕ_i)))
f3 = c(γ, r_c) * integrate(ϕ, p_share)
return f1 - f2 - f3
end
# numerical integration over periodic function.
# it seems that the trapezoid rule works quiet well.
function replicator_step(p_share, ϕ::LinRange, α, β, γ, ϵ, p, r_c, dt)
p_new = zeros(length(p_share))
for i in 1:length(p_share)
p_new[i] = p_share[i] + dt * p_share[i]*(1-p_share[i]) * Δu(α, β, γ, ϵ, p, r_c, ϕ, p_share, ϕ[i])
end
return p_new
end
function developement_plot(ax, p_0, ϕ, α, β, γ, ϵ, p, r_c, dt)
p_t0 = copy(p_0)
for i in 1:10000
p_t1 = replicator_step(p_t0, ϕ, α, β, γ, ϵ, p, r_c, dt)
p_t0 = p_t1
if i%1000==0
plot!(ax, ϕ, p_t1, label="t=$(dt*i)")
end
end
return ax
end
function get_λ_from_p(p_0, p_t, ϕ, δ, k, t)
a = p_t .- p_0
a = a ./ (δ * cos.(k * ϕ))
a = log.(a.+1)
return a/t
end
"""
b_i::Float64 # positive constant
α::Float64 # price factor
β::Float64 # detour factor
γ::Float64 # inconvenience factor
# system parameters
ϵ::Float64 # discount when sharing
p::Float64 # base price per distance
r_0::Float64 # radius of ring
angle_cutoff::Float64 # angle (rad) above which people are no longer getting matched
player_count::Int # number of players
# simulation parameters
dt::Float64 # timestep
games::Int # games played for each direction
steps::Int # integration steps
"""
"""
#Δu_array = [Δu(α, β, γ, ϵ, p, r_c, ϕ, p_0, ϕ_i) for ϕ_i in ϕ]
ax = plot(ϕ, p_0)
ax = developement_plot(ax, p_0, ϕ, α, β, γ, ϵ, p, r_c, dt)
ylabel!(ax, "π_share")
xlabel!(ax, "Angle ϕ")
title!(ax, "Probability of sharing, 2 players, analytical")
display(ax)
"""