forked from ggerganov/whisper.cpp
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathcommon.h
311 lines (250 loc) · 9.35 KB
/
common.h
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
// Various helper functions and utilities
#pragma once
#include <string>
#include <map>
#include <vector>
#include <random>
#include <thread>
#include <ctime>
#include <fstream>
#define COMMON_SAMPLE_RATE 16000
//
// GPT CLI argument parsing
//
struct gpt_params {
int32_t seed = -1; // RNG seed
int32_t n_threads = std::min(4, (int32_t) std::thread::hardware_concurrency());
int32_t n_predict = 200; // new tokens to predict
int32_t n_parallel = 1; // number of parallel streams
int32_t n_batch = 8; // batch size for prompt processing
int32_t n_ctx = 2048; // context size (this is the KV cache max size)
int32_t n_gpu_layers = 0; // number of layers to offlload to the GPU
bool ignore_eos = false; // ignore EOS token when generating text
// sampling parameters
int32_t top_k = 40;
float top_p = 0.9f;
float temp = 0.9f;
int32_t repeat_last_n = 64;
float repeat_penalty = 1.00f;
std::string model = "models/gpt-2-117M/ggml-model.bin"; // model path
std::string prompt = "";
std::string token_test = "";
bool interactive = false;
int32_t interactive_port = -1;
};
bool gpt_params_parse(int argc, char ** argv, gpt_params & params);
void gpt_print_usage(int argc, char ** argv, const gpt_params & params);
std::string gpt_random_prompt(std::mt19937 & rng);
//
// Vocab utils
//
std::string trim(const std::string & s);
std::string replace(
const std::string & s,
const std::string & from,
const std::string & to);
struct gpt_vocab {
using id = int32_t;
using token = std::string;
std::map<token, id> token_to_id;
std::map<id, token> id_to_token;
std::vector<std::string> special_tokens;
void add_special_token(const std::string & token);
};
// poor-man's JSON parsing
std::map<std::string, int32_t> json_parse(const std::string & fname);
std::string convert_to_utf8(const std::wstring & input);
std::wstring convert_to_wstring(const std::string & input);
void gpt_split_words(std::string str, std::vector<std::string>& words);
// split text into tokens
//
// ref: https://github.com/openai/gpt-2/blob/a74da5d99abaaba920de8131d64da2862a8f213b/src/encoder.py#L53
//
// Regex (Python):
// r"""'s|'t|'re|'ve|'m|'ll|'d| ?\p{L}+| ?\p{N}+| ?[^\s\p{L}\p{N}]+|\s+(?!\S)|\s+"""
//
// Regex (C++):
// R"('s|'t|'re|'ve|'m|'ll|'d| ?[[:alpha:]]+| ?[[:digit:]]+| ?[^\s[:alpha:][:digit:]]+|\s+(?!\S)|\s+)"
//
std::vector<gpt_vocab::id> gpt_tokenize(const gpt_vocab & vocab, const std::string & text);
// test outputs of gpt_tokenize
//
// - compare with tokens generated by the huggingface tokenizer
// - test cases are chosen based on the model's main language (under 'prompt' directory)
// - if all sentences are tokenized identically, print 'All tests passed.'
// - otherwise, print sentence, huggingface tokens, ggml tokens
//
void test_gpt_tokenizer(gpt_vocab & vocab, const std::string & fpath_test);
// load the tokens from encoder.json
bool gpt_vocab_init(const std::string & fname, gpt_vocab & vocab);
// sample next token given probabilities for each embedding
//
// - consider only the top K tokens
// - from them, consider only the top tokens with cumulative probability > P
//
// TODO: not sure if this implementation is correct
// TODO: temperature is not implemented
//
gpt_vocab::id gpt_sample_top_k_top_p(
const gpt_vocab & vocab,
const float * logits,
int top_k,
double top_p,
double temp,
std::mt19937 & rng);
gpt_vocab::id gpt_sample_top_k_top_p_repeat(
const gpt_vocab & vocab,
const float * logits,
const int32_t * last_n_tokens_data,
size_t last_n_tokens_data_size,
int top_k,
double top_p,
double temp,
int repeat_last_n,
float repeat_penalty,
std::mt19937 & rng);
//
// Audio utils
//
// Check if a buffer is a WAV audio file
bool is_wav_buffer(const std::string buf);
// Read WAV audio file and store the PCM data into pcmf32
// fname can be a buffer of WAV data instead of a filename
// The sample rate of the audio must be equal to COMMON_SAMPLE_RATE
// If stereo flag is set and the audio has 2 channels, the pcmf32s will contain 2 channel PCM
bool read_wav(
const std::string & fname,
std::vector<float> & pcmf32,
std::vector<std::vector<float>> & pcmf32s,
bool stereo);
// Write PCM data into WAV audio file
class wav_writer {
private:
std::ofstream file;
uint32_t dataSize = 0;
std::string wav_filename;
bool write_header(const uint32_t sample_rate,
const uint16_t bits_per_sample,
const uint16_t channels) {
file.write("RIFF", 4);
file.write("\0\0\0\0", 4); // Placeholder for file size
file.write("WAVE", 4);
file.write("fmt ", 4);
const uint32_t sub_chunk_size = 16;
const uint16_t audio_format = 1; // PCM format
const uint32_t byte_rate = sample_rate * channels * bits_per_sample / 8;
const uint16_t block_align = channels * bits_per_sample / 8;
file.write(reinterpret_cast<const char *>(&sub_chunk_size), 4);
file.write(reinterpret_cast<const char *>(&audio_format), 2);
file.write(reinterpret_cast<const char *>(&channels), 2);
file.write(reinterpret_cast<const char *>(&sample_rate), 4);
file.write(reinterpret_cast<const char *>(&byte_rate), 4);
file.write(reinterpret_cast<const char *>(&block_align), 2);
file.write(reinterpret_cast<const char *>(&bits_per_sample), 2);
file.write("data", 4);
file.write("\0\0\0\0", 4); // Placeholder for data size
return true;
}
// It is assumed that PCM data is normalized to a range from -1 to 1
bool write_audio(const float * data, size_t length) {
for (size_t i = 0; i < length; ++i) {
const int16_t intSample = data[i] * 32767;
file.write(reinterpret_cast<const char *>(&intSample), sizeof(int16_t));
dataSize += sizeof(int16_t);
}
if (file.is_open()) {
file.seekp(4, std::ios::beg);
uint32_t fileSize = 36 + dataSize;
file.write(reinterpret_cast<char *>(&fileSize), 4);
file.seekp(40, std::ios::beg);
file.write(reinterpret_cast<char *>(&dataSize), 4);
file.seekp(0, std::ios::end);
}
return true;
}
bool open_wav(const std::string & filename) {
if (filename != wav_filename) {
if (file.is_open()) {
file.close();
}
}
if (!file.is_open()) {
file.open(filename, std::ios::binary);
wav_filename = filename;
dataSize = 0;
}
return file.is_open();
}
public:
bool open(const std::string & filename,
const uint32_t sample_rate,
const uint16_t bits_per_sample,
const uint16_t channels) {
if (open_wav(filename)) {
write_header(sample_rate, bits_per_sample, channels);
} else {
return false;
}
return true;
}
bool close() {
file.close();
return true;
}
bool write(const float * data, size_t length) {
return write_audio(data, length);
}
~wav_writer() {
if (file.is_open()) {
file.close();
}
}
};
// Apply a high-pass frequency filter to PCM audio
// Suppresses frequencies below cutoff Hz
void high_pass_filter(
std::vector<float> & data,
float cutoff,
float sample_rate);
// Basic voice activity detection (VAD) using audio energy adaptive threshold
bool vad_simple(
std::vector<float> & pcmf32,
int sample_rate,
int last_ms,
float vad_thold,
float freq_thold,
bool verbose);
// compute similarity between two strings using Levenshtein distance
float similarity(const std::string & s0, const std::string & s1);
//
// SAM argument parsing
//
struct sam_params {
int32_t seed = -1; // RNG seed
int32_t n_threads = std::min(4, (int32_t) std::thread::hardware_concurrency());
std::string model = "models/sam-vit-b/ggml-model-f16.bin"; // model path
std::string fname_inp = "img.jpg";
std::string fname_out = "img.out";
};
bool sam_params_parse(int argc, char ** argv, sam_params & params);
void sam_print_usage(int argc, char ** argv, const sam_params & params);
//
// Terminal utils
//
// Terminal color map. 10 colors grouped in ranges [0.0, 0.1, ..., 0.9]
// Lowest is red, middle is yellow, highest is green.
const std::vector<std::string> k_colors = {
"\033[38;5;196m", "\033[38;5;202m", "\033[38;5;208m", "\033[38;5;214m", "\033[38;5;220m",
"\033[38;5;226m", "\033[38;5;190m", "\033[38;5;154m", "\033[38;5;118m", "\033[38;5;82m",
};
//
// Other utils
//
// convert timestamp to string, 6000 -> 01:00.000
std::string to_timestamp(int64_t t, bool comma = false);
// given a timestamp get the sample
int timestamp_to_sample(int64_t t, int n_samples, int whisper_sample_rate);
// check if file exists using ifstream
bool is_file_exist(const char *fileName);
// write text to file, and call system("command voice_id file")
bool speak_with_file(const std::string & command, const std::string & text, const std::string & path, int voice_id);