-
Notifications
You must be signed in to change notification settings - Fork 21
/
Copy pathheat_diffusion.py
63 lines (52 loc) · 1.74 KB
/
heat_diffusion.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
import pandas as pd
import numpy as np
#Model Variables
LAYER_HEIGHT = 100.
TOTAL_HEIGHT = 3700.
#Model Constants
HEAT_CAPACITY = 3985. * 1024.5 # J m^-3 K^-1
KAPPA = 5.5 * 10**-5 #m^2 s^-1
OCEAN_PERCENT = 0.71
def diffeqs(df, dt, fradfor, clim_sens):
"""
Differential equation for flux down.
"""
steps = df.shape[0]
df.ix[0, 'fluxdown'] = (
(((fradfor - clim_sens * df['tocean']) / HEAT_CAPACITY) * dt)[0]
)
df['fluxdown'] = (
(KAPPA * (df['tocean'].shift(1) - df['tocean']) / LAYER_HEIGHT) * dt
)
df.ix[0, 'fluxdown'] = (
(((fradfor - clim_sens * df['tocean']) / HEAT_CAPACITY) * dt)[0]
)
df['dtocean'] = (df['fluxdown'].diff(periods = -1) / LAYER_HEIGHT) * dt
df.ix[(steps - 1), 'dtocean'] = (
(df['fluxdown'] / LAYER_HEIGHT * dt)[steps - 1]
)
return df
def continuous_diffusion_model(results, run_years, dt, clim_sens):
"""
Implement the continuous diffusion model
used in Myhrvold and Cairdira (2011).
"""
z = np.array([np.arange(0, (TOTAL_HEIGHT + LAYER_HEIGHT), LAYER_HEIGHT)]).T
columns = ['z']
df = pd.DataFrame(z, columns=columns)
df['tocean'] = 0
df['dtocean'] = 0
df['fluxdown'] = 0
fradfor = results['total_forcing'][0]
df = diffeqs(df, dt, fradfor, clim_sens)
for t in range(0,int(run_years / dt)):
fradfor = results['total_forcing'][t]
df['tocean'] += dt * df['dtocean'] * 365 * 24 * 60 * 60
df = diffeqs(df, dt, fradfor, clim_sens)
results.ix[t, 't_os'] = df.ix[0, 'tocean']
results['t_eq'] = results['total_forcing'] / clim_sens
results['t_s'] = (
results['t_os'] * OCEAN_PERCENT +
results['t_eq'] * (1 - OCEAN_PERCENT)
)
return results