-
Notifications
You must be signed in to change notification settings - Fork 18
/
data_loader.py
229 lines (188 loc) · 8.49 KB
/
data_loader.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
import math
import os
import random
import sys
import torch
import torch.utils.data
import numpy as np
import scipy.io
import scipy.stats
import skimage.morphology
from scipy import misc
from skimage.morphology import square, dilation, erosion
def _get_train_all_p_pairs(out_dir, split_name='train'):
assert split_name in {'train', 'train_flip', 'test'}
if split_name == 'train_flip':
p_pairs_path = os.path.join(out_dir, 'p_pairs_train_flip.p')
else:
p_pairs_path = os.path.join(out_dir, 'p_pairs_' + split_name.split('_')[0] + '.p')
if os.path.exists(p_pairs_path):
with open(p_pairs_path, 'rb') as f:
p_pairs = pickle.load(f)
print('_get_train_all_pn_pairs finish ...')
print('p_pairs length:%d' % len(p_pairs))
return p_pairs
def _getSparseKeypoint(r, c, k, height, width, radius=4, var=4, mode='Solid'):
r = int(r)
c = int(c)
k = int(k)
indices = []
for i in range(-radius, radius+1):
for j in range(-radius, radius+1):
distance = np.sqrt(float(i**2 + j**2))
if r+i >= 0 and r+i < height and c+j >= 0 and c+j < width:
if 'Solid' == mode and distance <= radius:
indices.append([r+i, c+j, k])
return indices
def _getSparsePose(peaks, height, width, channel, radius=4, var=4, mode='Solid'):
indices = []
values = []
for k in range(len(peaks)):
p = peaks[k]
if 0!=len(p):
r = p[0][1]
c = p[0][0]
ind = _getSparseKeypoint(r, c, k, height, width, radius, var, mode)
indices.extend(ind)
shape = [height, width, channel]
return indices, shape
def _oneDimSparsePose(indices, shape):
ind_onedim = []
for ind in indices:
idx = ind[0]*shape[2]*shape[1] + ind[1]*shape[2] + ind[2]
ind_onedim.append(idx)
shape = np.prod(shape)
return ind_onedim, shape
def _sparse2dense(indices, shape):
dense = np.zeros(shape)
for i in range(len(indices)):
r = indices[i][0]
c = indices[i][1]
k = indices[i][2]
dense[r,c,k] = 1
return dense
def _getPoseMask(peaks, height, width, radius=4, var=4, mode='Solid'):
limbSeq = [[2,3], [2,6], [3,4], [4,5], [6,7], [7,8], [2,9], [9,10], \
[10,11], [2,12], [12,13], [13,14], [2,1], [1,15], [15,17], \
[1,16], [16,18], [2,17], [2,18], [9,12], [12,6], [9,3], [17,18]]
indices = []
for limb in limbSeq:
p0 = peaks[limb[0] -1]
p1 = peaks[limb[1] -1]
if 0!=len(p0) and 0!=len(p1):
r0 = p0[0][1]
c0 = p0[0][0]
r1 = p1[0][1]
c1 = p1[0][0]
ind = _getSparseKeypoint(r0, c0, 0, height, width, radius, var, mode)
indices.extend(ind)
ind = _getSparseKeypoint(r1, c1, 0, height, width, radius, var, mode)
indices.extend(ind)
distance = np.sqrt((r0-r1)**2 + (c0-c1)**2)
sampleN = int(distance/radius)
if sampleN > 1:
for i in range(1,sampleN):
r = r0 + (r1-r0)*i/sampleN
c = c0 + (c1-c0)*i/sampleN
ind = _getSparseKeypoint(r, c, 0, height, width, radius, var, mode)
indices.extend(ind)
shape = [height, width, 1]
dense = np.squeeze(_sparse2dense(indices, shape))
dense = dilation(dense, square(5))
dense = erosion(dense, square(5))
return dense
def _get_valid_peaks(all_peaks, subsets):
try:
subsets = subsets.tolist()
valid_idx = -1
valid_score = -1
for i, subset in enumerate(subsets):
score = subset[-2]
if score > valid_score:
valid_idx = i
valid_score = score
if valid_idx >= 0:
return all_peaks
else:
return None
except:
return None
def _format_data(folder_path, pairs, i, all_peaks_dic, subsets_dic):
# Read the filename:
img_path_0 = os.path.join(folder_path, pairs[i][0])
img_path_1 = os.path.join(folder_path, pairs[i][1])
image_raw_0 = misc.imread(img_path_0)
image_raw_1 = misc.imread(img_path_1)
height, width = image_raw_0.shape[1], image_raw_0.shape[0]
########################## Pose 16x8 & Pose coodinate (for 128x64(Solid) 128x64(Gaussian))##########################
if (all_peaks_dic is not None) and (pairs[i][0] in all_peaks_dic) and (pairs[i][1] in all_peaks_dic):
## Pose 1
peaks = _get_valid_peaks(all_peaks_dic[pairs[i][1]], subsets_dic[pairs[i][1]])
indices_r4_1, shape = _getSparsePose(peaks, height, width, 18, radius=4, mode='Solid')
indices_r4_1, shape_1 = _oneDimSparsePose(indices_r4_1, shape)
pose_mask_r4_1 = _getPoseMask(peaks, height, width, radius=4, mode='Solid')
else:
return None
image_raw_0 = np.reshape(image_raw_0, (height, width, 3))
image_raw_0 = image_raw_0.astype('float32')
image_raw_1 = np.reshape(image_raw_1, (height, width, 3))
image_raw_1 = image_raw_1.astype('float32')
mask_1 = np.reshape(pose_mask_r4_1, (height, width, 1))
mask_1 = mask_1.astype('float32')
indices_r4_1 = np.array(indices_r4_1).astype(np.int64).flatten().tolist()
indices_r4_1_dense = np.zeros((shape_1))
indices_r4_1_dense[indices_r4_1] = 1
indices_r4_1 = np.reshape(indices_r4_1_dense, (height, width, 18))
pose_1 = indices_r4_1.astype('float32')
image_0 = (image_raw_0 - 127.5) / 127.5
image_1 = (image_raw_1 - 127.5) / 127.5
pose_1 = pose_1 * 2 - 1
image_0 = torch.from_numpy(np.transpose(image_0, (2, 0, 1)))
image_1 = torch.from_numpy(np.transpose(image_1, (2, 0, 1)))
mask_1 = torch.from_numpy(np.transpose(mask_1, (2, 0, 1)))
pose_1 = torch.from_numpy(np.transpose(pose_1, (2, 0, 1)))
return [image_0, image_1, pose_1, mask_1]
class PoseDataset(torch.utils.data.Dataset):
"""Pose dataset."""
def __init__(self, out_dir, folder_path, folder_path_flip, pose_peak_path, pose_sub_path, pose_peak_path_flip, pose_sub_path_flip):
self.folder_path = folder_path
self.folder_path_flip = folder_path_flip
self.p_pairs = _get_train_all_p_pairs(out_dir)
self.p_pairs_flip = _get_train_all_p_pairs(out_dir, 'train_flip')
self.length = len(self.p_pairs) + len(self.p_pairs_flip)
self.all_peaks_dic = None
self.subsets_dic = None
self.all_peaks_dic_flip = None
self.subsets_dic_flip = None
with open(pose_peak_path, 'rb') as f:
self.all_peaks_dic = pickle.load(f, encoding='latin1')
with open(pose_sub_path, 'rb') as f:
self.subsets_dic = pickle.load(f, encoding='latin1')
with open(pose_peak_path_flip, 'rb') as f:
self.all_peaks_dic_flip = pickle.load(f, encoding='latin1')
with open(pose_sub_path_flip, 'rb') as f:
self.subsets_dic_flip = pickle.load(f, encoding='latin1')
def __len__(self):
return self.length
def __getitem__(self, index):
while True:
USE_FLIP = index >= len(self.p_pairs)
if USE_FLIP:
example = _format_data(self.folder_path_flip, p_pairs_flip, index - len(self.p_pairs), self.all_peaks_dic_flip, self.subsets_dic_flip)
if example:
return example
index = (index + 1) % length
else:
example = _format_data(self.folder_path, p_pairs, index, self.all_peaks_dic, self.subsets_dic)
if example:
return example
index = (index + 1) % length
def get_loader(dataset_dir, batch_size):
pose_dataset = PoseDataset(os.path.join(dataset_dir, 'DF_train_data'),
os.path.join(dataset_dir, 'filted_up_train'),
os.path.join(dataset_dir, 'filted_up_train_flip'),
os.path.join(dataset_dir, 'PoseFiltered', 'all_peaks_dic_DeepFashion.p'),
os.path.join(dataset_dir, 'PoseFiltered', 'subsets_dic_DeepFashion.p'),
os.path.join(dataset_dir, 'PoseFiltered', 'all_peaks_dic_DeepFashion_Flip.p'),
os.path.join(dataset_dir, 'PoseFiltered', 'subsets_dic_DeepFashion_Flip.p'))
pose_loader = torch.utils.data.DataLoader(pose_dataset, batch_size=batch_size, shuffle=True, num_workers=2)