-
Notifications
You must be signed in to change notification settings - Fork 11
/
resnetv2.py
371 lines (322 loc) · 13.2 KB
/
resnetv2.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
"""Bottleneck ResNet v2 with GroupNorm and Weight Standardization."""
from collections import OrderedDict
import torch
import torch.nn as nn
import torch.nn.functional as F
class Reshape(nn.Module):
def __init__(self, *args):
super(Reshape, self).__init__()
self.shape = args
def forward(self, x):
return x.view(self.shape)
class StdConv2d(nn.Conv2d):
def forward(self, x):
w = self.weight
v, m = torch.var_mean(w, dim=[1, 2, 3], keepdim=True, unbiased=False)
w = (w - m) / torch.sqrt(v + 1e-10)
return F.conv2d(x, w, self.bias, self.stride, self.padding,
self.dilation, self.groups)
def conv3x3(cin, cout, stride=1, groups=1, bias=False):
return StdConv2d(
cin,
cout,
kernel_size=3,
stride=stride,
padding=1,
bias=bias,
groups=groups)
def conv1x1(cin, cout, stride=1, bias=False):
return StdConv2d(
cin, cout, kernel_size=1, stride=stride, padding=0, bias=bias)
def tf2th(conv_weights):
"""Possibly convert HWIO to OIHW."""
if conv_weights.ndim == 4:
conv_weights = conv_weights.transpose([3, 2, 0, 1])
return torch.from_numpy(conv_weights)
class PreActBottleneck(nn.Module):
"""Pre-activation (v2) bottleneck block.
Except it puts the stride on 3x3 conv when available.
"""
def __init__(self, cin, cout=None, cmid=None, stride=1):
super().__init__()
cout = cout or cin
cmid = cmid or cout // 4
self.gn1 = nn.GroupNorm(32, cin)
self.conv1 = conv1x1(cin, cmid)
self.gn2 = nn.GroupNorm(32, cmid)
self.conv2 = conv3x3(cmid, cmid,
stride) # Original code has it on conv1!!
self.gn3 = nn.GroupNorm(32, cmid)
self.conv3 = conv1x1(cmid, cout)
self.relu = nn.ReLU(inplace=True)
if (stride != 1 or cin != cout):
# Projection also with pre-activation according to paper.
self.downsample = conv1x1(cin, cout, stride)
def forward(self, x):
out = self.relu(self.gn1(x))
# Residual branch
residual = x
if hasattr(self, 'downsample'):
residual = self.downsample(out)
# Unit's branch
out = self.conv1(out)
out = self.conv2(self.relu(self.gn2(out)))
out = self.conv3(self.relu(self.gn3(out)))
return out + residual
def load_from(self, weights, prefix=''):
convname = 'standardized_conv2d'
with torch.no_grad():
self.conv1.weight.copy_(
tf2th(weights[f'{prefix}a/{convname}/kernel']))
self.conv2.weight.copy_(
tf2th(weights[f'{prefix}b/{convname}/kernel']))
self.conv3.weight.copy_(
tf2th(weights[f'{prefix}c/{convname}/kernel']))
self.gn1.weight.copy_(
tf2th(weights[f'{prefix}a/group_norm/gamma']))
self.gn2.weight.copy_(
tf2th(weights[f'{prefix}b/group_norm/gamma']))
self.gn3.weight.copy_(
tf2th(weights[f'{prefix}c/group_norm/gamma']))
self.gn1.bias.copy_(tf2th(weights[f'{prefix}a/group_norm/beta']))
self.gn2.bias.copy_(tf2th(weights[f'{prefix}b/group_norm/beta']))
self.gn3.bias.copy_(tf2th(weights[f'{prefix}c/group_norm/beta']))
if hasattr(self, 'downsample'):
w = weights[f'{prefix}a/proj/{convname}/kernel']
self.downsample.weight.copy_(tf2th(w))
class ResNetV2(nn.Module):
"""Implementation of Pre-activation (v2) ResNet mode."""
def __init__(self,
block_units,
width_factor,
head_size=1000,
num_block_open=-1):
super().__init__()
wf = width_factor # shortcut 'cause we'll use it a lot.
if num_block_open == -1:
self.fix_parts = []
self.fix_gn1 = None
elif num_block_open == 0:
self.fix_parts = [
'root', 'block1', 'block2', 'block3', 'block4', 'before_head'
]
self.fix_gn1 = None
elif num_block_open == 1:
self.fix_parts = ['root', 'block1', 'block2', 'block3']
self.fix_gn1 = 'block4'
elif num_block_open == 2:
self.fix_parts = ['root', 'block1', 'block2']
self.fix_gn1 = 'block3'
elif num_block_open == 3:
self.fix_parts = ['root', 'block1']
self.fix_gn1 = 'block2'
elif num_block_open == 4:
self.fix_parts = ['root']
self.fix_gn1 = 'block1'
else:
raise ValueError(
'Unexpected block number {}'.format(num_block_open))
self.root = nn.Sequential(
OrderedDict([
('conv',
StdConv2d(
3,
64 * wf,
kernel_size=7,
stride=2,
padding=3,
bias=False)),
('pad', nn.ConstantPad2d(1, 0)),
('pool', nn.MaxPool2d(kernel_size=3, stride=2, padding=0)),
# The following is subtly not the same!
# ('pool', nn.MaxPool2d(kernel_size=3, stride=2, padding=1)),
]))
self.body = nn.Sequential(
OrderedDict([
('block1',
nn.Sequential(
OrderedDict(
[('unit01',
PreActBottleneck(
cin=64 * wf, cout=256 * wf, cmid=64 * wf))] +
[(f'unit{i:02d}',
PreActBottleneck(
cin=256 * wf, cout=256 * wf, cmid=64 * wf))
for i in range(2, block_units[0] + 1)], ))),
('block2',
nn.Sequential(
OrderedDict(
[('unit01',
PreActBottleneck(
cin=256 * wf,
cout=512 * wf,
cmid=128 * wf,
stride=2))] +
[(f'unit{i:02d}',
PreActBottleneck(
cin=512 * wf, cout=512 * wf, cmid=128 * wf))
for i in range(2, block_units[1] + 1)], ))),
('block3',
nn.Sequential(
OrderedDict(
[('unit01',
PreActBottleneck(
cin=512 * wf,
cout=1024 * wf,
cmid=256 * wf,
stride=2))] +
[(f'unit{i:02d}',
PreActBottleneck(
cin=1024 * wf, cout=1024 * wf, cmid=256 * wf))
for i in range(2, block_units[2] + 1)], ))),
('block4',
nn.Sequential(
OrderedDict(
[('unit01',
PreActBottleneck(
cin=1024 * wf,
cout=2048 * wf,
cmid=512 * wf,
stride=2))] +
[(f'unit{i:02d}',
PreActBottleneck(
cin=2048 * wf, cout=2048 * wf, cmid=512 * wf))
for i in range(2, block_units[3] + 1)], ))),
]))
self.before_head = nn.Sequential(
OrderedDict([
('gn', nn.GroupNorm(32, 2048 * wf)),
('relu', nn.ReLU(inplace=True)),
('avg', nn.AdaptiveAvgPool2d(output_size=1)),
]))
self.head = nn.Sequential(
OrderedDict([
('conv',
nn.Conv2d(2048 * wf, head_size, kernel_size=1, bias=True)),
]))
if 'root' in self.fix_parts:
for param in self.root.parameters():
param.requires_grad = False
for bname, block in self.body.named_children():
if bname in self.fix_parts:
for param in block.parameters():
param.requires_grad = False
elif bname == self.fix_gn1:
for param in block.unit01.gn1.parameters():
param.requires_grad = False
def intermediate_forward(self, x, layer_index=None):
if layer_index == 'all':
out_list = []
out = self.root(x)
out_list.append(out)
out = self.body.block1(out)
out_list.append(out)
out = self.body.block2(out)
out_list.append(out)
out = self.body.block3(out)
out_list.append(out)
out = self.body.block4(out)
out_list.append(out)
out = self.head(self.before_head(out))
return out[..., 0, 0], out_list
out = self.root(x)
if layer_index == 1:
out = self.body.block1(out)
elif layer_index == 2:
out = self.body.block1(out)
out = self.body.block2(out)
elif layer_index == 3:
out = self.body.block1(out)
out = self.body.block2(out)
out = self.body.block3(out)
elif layer_index == 4:
out = self.body.block1(out)
out = self.body.block2(out)
out = self.body.block3(out)
out = self.body.block4(out)
elif layer_index == 5:
out = self.body.block1(out)
out = self.body.block2(out)
out = self.body.block3(out)
out = self.body.block4(out)
out = self.before_head(out)
return out
def forward(self, x, layer_index=None):
if layer_index is not None:
return self.intermediate_forward(x, layer_index)
if 'root' in self.fix_parts:
with torch.no_grad():
x = self.root(x)
else:
x = self.root(x)
for bname, block in self.body.named_children():
if bname in self.fix_parts:
with torch.no_grad():
x = block(x)
else:
x = block(x)
if 'before_head' in self.fix_parts:
with torch.no_grad():
x = self.before_head(x)
else:
x = self.before_head(x)
x = self.head(x)
assert x.shape[-2:] == (1, 1) # We should have no spatial shape left.
return x[..., 0, 0]
def load_state_dict_custom(self, state_dict):
state_dict_new = {}
for k, v in state_dict.items():
state_dict_new[k[len('module.'):]] = v
self.load_state_dict(state_dict_new, strict=True)
def load_from(self, weights, prefix='resnet/'):
with torch.no_grad():
self.root.conv.weight.copy_(
tf2th(weights[f'{prefix}root_block/'
'standardized_conv2d/kernel']))
self.before_head.gn.weight.copy_(
tf2th(weights[f'{prefix}group_norm/gamma']))
self.before_head.gn.bias.copy_(
tf2th(weights[f'{prefix}group_norm/beta']))
self.head.conv.weight.copy_(
tf2th(weights[f'{prefix}head/conv2d/kernel']))
self.head.conv.bias.copy_(
tf2th(weights[f'{prefix}head/conv2d/bias']))
for bname, block in self.body.named_children():
for uname, unit in block.named_children():
unit.load_from(weights, prefix=f'{prefix}{bname}/{uname}/')
def train(self, mode=True):
self.training = mode
for module in self.children():
module.train(mode)
self.head.train(mode)
if 'root' in self.fix_parts:
self.root.eval()
else:
self.root.train(mode)
for bname, block in self.body.named_children():
if bname in self.fix_parts:
block.eval()
elif bname == self.fix_gn1:
block.train(mode)
block.unit01.gn1.eval()
else:
block.train(mode)
if 'before_head' in self.fix_parts:
self.before_head.eval()
else:
self.before_head.train(mode)
return self
KNOWN_MODELS = OrderedDict([
('BiT-M-R50x1', lambda *a, **kw: ResNetV2([3, 4, 6, 3], 1, *a, **kw)),
('BiT-M-R50x3', lambda *a, **kw: ResNetV2([3, 4, 6, 3], 3, *a, **kw)),
('BiT-M-R101x1', lambda *a, **kw: ResNetV2([3, 4, 23, 3], 1, *a, **kw)),
('BiT-M-R101x3', lambda *a, **kw: ResNetV2([3, 4, 23, 3], 3, *a, **kw)),
('BiT-M-R152x2', lambda *a, **kw: ResNetV2([3, 8, 36, 3], 2, *a, **kw)),
('BiT-M-R152x4', lambda *a, **kw: ResNetV2([3, 8, 36, 3], 4, *a, **kw)),
('BiT-S-R50x1', lambda *a, **kw: ResNetV2([3, 4, 6, 3], 1, *a, **kw)),
('BiT-S-R50x3', lambda *a, **kw: ResNetV2([3, 4, 6, 3], 3, *a, **kw)),
('BiT-S-R101x1', lambda *a, **kw: ResNetV2([3, 4, 23, 3], 1, *a, **kw)),
('BiT-S-R101x3', lambda *a, **kw: ResNetV2([3, 4, 23, 3], 3, *a, **kw)),
('BiT-S-R152x2', lambda *a, **kw: ResNetV2([3, 8, 36, 3], 2, *a, **kw)),
('BiT-S-R152x4', lambda *a, **kw: ResNetV2([3, 8, 36, 3], 4, *a, **kw)),
])